期刊文献+

基于快速离散曲波变换的图像去噪算法 被引量:3

Image denoising based on fast discrete curvelet transform
下载PDF
导出
摘要 Curvelet变换可以更好地表示曲线奇异函数的异向性及图像边缘,因此更适合于多尺度图像去噪。针对传统阈值法存在的不足,在分析wrapping方法的快速离散曲波变换基础上,提出结合Cycle Spinning循环平移方法的菱形块阈值规则去噪法,并自适应地对不同的Curvelet子块进行阈值化。该方法可以消除由于Curvelet变换缺乏平移不变性而产生的图像失真,并且更好地利用曲波系数的相关性。实验结果表明,该方法与传统的小波去噪、曲波硬阈值去噪、曲波软阈值去噪、曲波软硬阈值折中法去噪相比,使得去噪图像的峰值信噪比更高,视觉效果更好。 Curvelet can reflect anisotropy of singular function and image edges; therefore it is better suitable for multiseale image denoising. According to the defects of the traditional thresholding methods, the diamond-shaped pieces thresholding algorithm combined with cycle spinning algorithm was proposed after analyzing the fast discrete eurvelet transform based on wrapping algorithm, and the curvelet transform coefficients in different subbands were filtered with adaptive thresholds. The method carl avoid image distortion due to the lack of translation invarianee of eurvelet transform, and earl make use Of correlation of eurvelet coefficients better. Experimental results show that the proposed method.yields denoised images with higher PSNR and better visual effects compared with the traditional wavelet denoising algorithm, the hard-threshold denoising method, the soft-threshold denoising method and the method between soft and hard thresholding based on curvelet transform.
出处 《计算机应用》 CSCD 北大核心 2008年第12期3138-3140,共3页 journal of Computer Applications
基金 四川省科技厅攻关项目(05GG021-026-03)
关键词 快速离散曲波变换 wrapping算法 循环平移算法 块阈值 Fast Discrete Curvelet Transform (FDCT) wrapping algorithm cycle Spin.niilg algorithm block threshold
  • 相关文献

参考文献9

  • 1CANDE S E J, DONOHO D L. Ridgelets: A key to higher-dimensional intermittcney [ J]. Philosophical Transactions of the Royal Society of London Series A, 1999, 357(1760) : 2495 -2509.
  • 2DONOHO D L, DUNCAN M R. Digital curvelet transform: Strategy, implementation experiments [ C]// SPIE 2000. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers, 2000:12 -29.
  • 3CANDE S E J, DONOHO D L. New tight frames of eurvelets and optimal representations of objects with C^2singularities [J]. Commu, nications on Pure and Applied Mathematics, 2004, 57(2): 219 - 266.
  • 4CANDS E J, DEMANET L, DONOHO D L, et al. Fast discrete curvelet transforms [ J]. Multiscale Modeling and Simulation, 2005, 5(3): 861 -899.
  • 5STARCK J L, CANDE S E J, DONOHO D L. The curvelet transform for image denoising [ J]. IEEE Transactions on Image Process, 2002, 11 (6) : 670 - 684.
  • 6吴芳平,狄红卫.基于Curvelet变换的软硬阈值折衷图像去噪[J].光学技术,2007,33(5):688-690. 被引量:13
  • 7STARCK J L, CANDE S E J, DONOHO D L. The curvelet transform for image denoising[ J]. IEEE Transactions on Image Processing, 2002, 11 (6) : 670 - 684.
  • 8杨家红,许灿辉,王耀南.基于快速曲波变换的图像去噪算法[J].计算机工程与应用,2007,43(6):31-33. 被引量:7
  • 9刘成云,陈振学,马于涛.自适应阈值的小波图像去噪[J].光电工程,2007,34(6):77-81. 被引量:45

二级参考文献27

  • 1冯鹏,米德伶,潘英俊,魏彪,金炜.改进的Curvelet变换图像降噪方法[J].光电工程,2005,32(9):67-70. 被引量:14
  • 2梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 3徐长发 李国宽.实用小波方法[M].武汉:华中科技大学出版社,2004..
  • 4马拉特 杨力华.信号处理的小波导引[M].北京:机械工业出版社,2003..
  • 5Cand'es E J,Demanet L,Donoho D L,et al.Fast discrete curvelet transforms[R].Applied and Computational Mathematics,California Institute of Technology,2005.
  • 6Starck Jean-Luc,Cand'es E J,Donoho D L.The curvelet transform for image denoising[J].IEEE Transactions on Image Processing,2002,11 (6):670-684.
  • 7Cand'es E J,Donoho D L.New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J].Comm Pure Appl Math,2004,57(2):219-266.
  • 8Ying Le-xing,Demanet L,Cand'es E J.3D discrete curvelet transform[R].Applied and Computational Mathematics,California Institute of Technology,2005.
  • 9Romberg J,Choi H,Baraniuk R G.Bayesian wavelet domain image modeling using hidden Markov models[J].IEEE Transactions on Image Processing,2001,10(7):1056-1068.
  • 10ZHANG Xiaoping,DESAI M D.Adaptive denoising based on SURE risk[J].IEEE Signal Processing Letters,1998,5(10):265-267.

共引文献59

同被引文献21

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部