期刊文献+

基于竞争与拉伸技术的粒子群算法 被引量:7

Particle swarm optimization based on competition and stretch
下载PDF
导出
摘要 为了避免局部最优与收敛速度慢的问题,在粒子群算法中引入"竞争"与"拉伸"技术,提出一种新的粒子群算法——竞争-拉伸粒子群算法。用3个基准函数对标准粒子群算法、局域粒子群算法、提出的新算法等同时进行测试,对比结果表明,提出的算法不仅具有较高的收敛速度,而且能有效地进行全局搜索。 In order to avoid the problem of partial optimization and slow-footed convergence, the technology of competition and stretch is introduced and a new PSO-competition-stretch PSO is proposed. Three datum functions are employed to simultaneously test standard PSO, partial PSO and the new PSO proposed. The result show that the new arithmetic not only has the high convergence speed but also can conduct global search effectively.
作者 牛永洁 陈莉
出处 《计算机工程与设计》 CSCD 北大核心 2008年第22期5802-5804,5809,共4页 Computer Engineering and Design
基金 陕西省自然科学基金项目(98X11) 陕西省教育厅重点科研计划基金项目(00JK015)
关键词 粒子群优化算法 竞争 拉伸 局部最优 全局搜索 PSO competition stretch partial optimization global search
  • 相关文献

参考文献12

  • 1Eberhart R C, Shi Y H.Particle swarm optimization: Development, applications and resources[C].Proc Congress on Evolutionary Computation 2001. Piscataway, NJ: IEEE Press, 2001: 81-86.
  • 2Kennedy J, Eberhart R C.Particle swarm optimizations[C]. Perth, Australia: Proceedings of IEEE International Conference on Neutral Networks, 1995:1942-1948.
  • 3周驰,高海兵,高亮,章万国.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11. 被引量:178
  • 4王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 5陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 6Clerc M.The swarm and queen: Towards a deterministic and adaptive particle swarm optimization[C]. Washington DC:Proceedings of Congress on Evolutionary Computation, 1999:1951-1957.
  • 7高鹰.一种自适应扩展粒子群优化算法[J].计算机工程与应用,2006,42(15):12-15. 被引量:17
  • 8Parsopoulos K E,Vrahatis M N.Parameter selection and adaptation in unified particle swarm optimization[J].Mathematical and Computer Modeling,2007,10:198-213.
  • 9Srinivas Pasupuleti,Roberto Battiti.The gregarious particle swarm optimizer[C]. Seattle,Washington,USA:GECCO'06, 2006.
  • 10Van den Bergh F, Engelbrecht A P. Using cooperative particle swarm optimization to train product unit neural networks [C]. Washington DC, USA: IEEE International Joint Conference on Neural Networks,2001.

二级参考文献61

  • 1[1]Kennedy J, Eberhart RC,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 2[2]Mataric M.Designing and Understanding Adaptive Group Behavior[J].Adaptive Behavior,1995,4:1-12.
  • 3[3]Dorigo M,V Maniezzo,A Colorni.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996.
  • 4[4]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948.
  • 5[5]Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,Indiana,1997.
  • 6[6]Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of Sixth International Symposium Micro Machine and Human Science,Nagoya,Japan,1995.
  • 7[7]Shi Y H,Eberhart R C.Parameter Selection in Particle Swarm Optimization[C].Annual,1998.
  • 8[8]Eberhart R C, Shi Y H.Comparison between Genetic Algorithms and Particle Swarm Optimization[R].Annual Conference on Evolutionary Programming, San Diego,1998.
  • 9[9]Shi Y H,Eberhart R C.A Modified Particle Swarm Optimizer[R].IEEE International Conference on Evolutionary Computation,Anchorage,Alaska,1998.
  • 10[10]Shi Y H,et al.Empirical Study of Particle Swarm Optimization[R].Proceedings of Congress on Evolutionary Computation,1999.

共引文献959

同被引文献65

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部