期刊文献+

基于遗传算法的人工鱼群优化算法 被引量:25

Artificial fish swarm optimization algorithm based on genetic algorithm
下载PDF
导出
摘要 人工鱼群算法(AFSA)是一种高效的群智能全局优化技术。通过对人工鱼群算法(AFSA)不足的研究,在遗传算法的基础上,提出了基于遗传算法的人工鱼群优化算法。该算法保留了人工鱼群算法(AFSA)简单、易实现的特点,同时克服了人工鱼漫无目的的随机游动或在非全局极值点的大量聚集,显著提高了算法的运行效率和求解质量。最后通过大量的函数和实例测试结果表明,与其它算法相比,该算法是可行和有效的,具有运行速度快和求解精度高等特点。 Artificial fish swarm algorithm (AFSA) is an efficient intelligent optimization technique. The disadvantages of AFSA is researched, then a hybrid artificial fish swarm optimization algorithm based on genetic algorithm is presented. The hybrid algorithm break away from artificial fish moving without a definite purpose or heavy getting together round the local optimum. It is simple and im- plement as AFSA, but can greatly improve the ability of efficiency and accuracy of seeking the global excellent result. The feasibility and effectiveness of the approach is verified through testing by some functions and practical problems. Compared with the other algorithms, the experimental results show that the proposed algorithm has traits with quickly speed and high precision.
作者 刘白 周永权
出处 《计算机工程与设计》 CSCD 北大核心 2008年第22期5827-5829,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60461001) 广西自然科学基金项目(0542048)
关键词 人工鱼群算法 遗传算法 优化 artificial fish school algorithm genetic algorithm optimization
  • 相关文献

参考文献8

二级参考文献38

  • 1唐剑东,熊信银,吴耀武,蒋秀洁.基于人工鱼群算法的电力系统无功优化[J].继电器,2004,32(19):9-12. 被引量:49
  • 2张利彪,周春光,刘小华,马铭,吕英华,马志强.求解约束优化问题的一种新的进化算法[J].吉林大学学报(理学版),2004,42(4):534-540. 被引量:23
  • 3周育人,周继香,王勇.一种非参数惩罚函数的优化演化算法[J].计算机工程,2005,31(10):31-33. 被引量:8
  • 4刘华蓥,林玉娥,王淑云.粒子群算法的改进及其在求解约束优化问题中的应用[J].吉林大学学报(理学版),2005,43(4):472-476. 被引量:33
  • 5戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 6Michalewicz Z, Schoenauer M. Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 1996, 4( 1 ): 1-32
  • 7Deb K. An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311-338
  • 8Runarsson T P, Yao X. Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Trans.on Evolutionary Computation,2000,4(3): 284-294
  • 9Powell D, Skolnick M M. Using Genetic Algorithms in Engineering Design Optimization with Nonlinear Constraints. Proceedings of the Fifth International Conference on Genetic Algorithms, 1993:424-430
  • 10Gen M, Cheng R. Genetic Algorithms and Engineering Design.Wiley, New-York, 1997

共引文献920

同被引文献185

引证文献25

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部