期刊文献+

广义不变凸分式规划的Mond-Weir对偶定理

Mmond-Weir Duality Theorems for Generalized Invexity Fractional Programming
下载PDF
导出
摘要 本文对不变凸函数概念推广,引入了一类更为广泛的广义不变凸性概念,并证明了在该类新广义不变凸性条件下,一类非凸非线性分式规划的Mond-Weir对偶的弱对偶、强对偶和逆对偶定理. In this paper,a class of new generalized invexity concept is defmed on basis of[ 1 ] ,and then Mond-Weir duality theorems with the weakduality theorems, strong duality theorem and converse duality theorem are proved under this new generalized invexity condition for a classof nonconvex nonlinear fractional programming.
出处 《吉林师范大学学报(自然科学版)》 2008年第4期38-40,共3页 Journal of Jilin Normal University:Natural Science Edition
关键词 广义不变凸 非线性分式规划 MOND-WEIR对偶 最优解 generalized invexity nonlinear fractional programmning Mond-Weir duality theories optimal solution
  • 相关文献

参考文献5

  • 1Hanson M A. On sufficiency of Kuhn-Tueker Conditions[J] .J. Math Anal. 1981.80:545 - 550.
  • 2Graven B D. Langrange Conditions and quasiduality[J] .bull.Austral.Math.Sos, 1977,16:325- 339.
  • 3Zulfiqar. A. Khan. On Ratio Invexity in Mathematical Programming[ J ]. J. Math. Anal. Appl, 1997,205 : 330 - 336.
  • 4杨新民.广义不变凸非线性分式规划的对偶性[J].数学的实践与认识,1996,26(3):217-222. 被引量:6
  • 5Graven B D. Duality for generalized convex fractional programs[M]. Acadmemic Pree: Generalized Concavity in Optimization and Economic Edited by Schaible, S. and zeimba, W T. 1981,478 - 489.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部