期刊文献+

一种基于递增权值函数的图像谱的匹配算法

A matching algorithm based on increasing weighting function of graphic spectrum
下载PDF
导出
摘要 文章提出了一种基于递增权值函数的图像谱的匹配算法,利用递增权值函数,分别对2幅待匹配图像的特征点构造Laplace矩阵,其次进行SVD分解;通过分解后的矩阵特征值和特征向量,寻找匹配矩阵,根据匹配矩阵的特征信息,实现2幅图像特征点之间的匹配;通过对Laplace矩阵和邻接矩阵比较实验,表明了Laplace谱能使发生刚体变换前后的图像获得更高的匹配精度,递增权值函数的Laplace谱比欧式距离的Laplace谱匹配精度要高。 A matching algorithm based on the increasing weighting function of graphic spectrum is proposed in this paper. Firstly, according to the feature points of two related images, the Laplace matrix is defined by the increasing weighting function. Secondly, it is decomposed by SVD. Thirdly, a matching matrix is constructed by the result of the decomposition. Finally, the matching feature points of the two images are obtained according to the matching matrixes. Experiments arc made in order to compare the Laplace matrix with the adjacency matrix. Experiment results indicate that the algorithm in the paper has the higher precision of matching. The results also show that the increasing weighting Laplace spectrum has higher precision of matching than the Euclidean Laplace spectrum.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第11期1778-1781,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(10601001 60772121) 安徽省自然科学基金资助项目(050460102 070412065) 安徽省教育厅自然科学研究资助项目(2006KJ030B)
关键词 LAPLACE谱 邻接矩阵 图像匹配 Laplace spectrum adjacency matrix image matching
  • 相关文献

参考文献11

  • 1Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts[J]. IEEE Trans on Pattern Analysis and Machine Intelligenee, 2002, 24 (4) : 509--522.
  • 2Chui H L, Rangarajan A. A new algorithm for non-rigid point matching[C]//Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 2000. Hilton Head Island:IEEE, 2000:44--51.
  • 3李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,17(2):216-222. 被引量:112
  • 4Soctt G L, Longuet-Higgins H C. An algorithm for associating the features of two images[C]//Proceedings of Royal Society of London, 1991:21-26.
  • 5Shapiro L S, Brady J M. Feature-based correspondence: an eigenvector approach [J]. Image and Vision Computing, 1992, 10(5):283--288.
  • 6Pilu M. A direct method for stereo correspondence based on singular value decomposition[C]//IEEE Conferece on Computer Vision and Pattern Recognition, 1997:261--266.
  • 7Carcassoni M, Hancock E R. Spectral correspondence for point pattern matching [J]. Pattern Recognition, 2003, 36 (1) : 193--204.
  • 8Merris R. Laplacian matrices of graphs: a survey [J]. Linear Algebra and Its Applications, 1994, 197/198:143--176.
  • 9Chung F R K. Spectral graph theory [M]. Providence, Rhode Island, USA: American Mathematical Society, 1997 50--250.
  • 10王年,范益政,韦穗,梁栋.基于图的Laplace谱的特征匹配[J].中国图象图形学报,2006,11(3):332-336. 被引量:32

二级参考文献17

  • 1Cvetkovié D,Doob M,Sachs H.Spectra of graphs:Theory and application[M].Berlin:Academic Press,1982.
  • 2Chung F R K.Spectral graph theory[M].Providance,Rhode Island USA:American Mathematical Society,1997.
  • 3Umeyama S.An eigen decomposition approach to weighted graph matching problems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(5):695 ~ 703.
  • 4Scott G L,Longuet-Higgins H C.An algorithm for associating the features of two images[J].Proceedings of Royal Society of London,1991,B-244:21 ~26.
  • 5Shapiro L S,Brady J M.Feature-based correspondence-An eigenvector approach[J].Image Vision Comput,1992,10 (5):283 ~288.
  • 6Carcassoni Marco,Hancock Edwin R.Spectral correspondence for point pattern matching[J].Pattern Recognition,2003,36 (1):193 ~ 204.
  • 7Carcassoni Marco,Hancock Edwin R.Correspondence matching with modal clusters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1609 ~ 1615.
  • 8Myers Richard,Hancock Edwin R.Least-commitment graph matching with genetic algorithms[J].Pattern Recognition,2001,34(2):375 ~394,
  • 9Endika Bengoetxea,Pedro Larranagab,Isabelle Bloch,et al.Inexact graph matching by means of estimation of distribution algorithms[J].Pattern Recognition,2002,35 (12):2867 ~ 2880.
  • 10Sengupta K,Boyer K L.Modelbase partitioning using property matrix spectra[J].Computer Vision Image Understanding,1998,70 (2):177 ~ 196.

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部