摘要
文章应用动力系统分歧理论、定性理论和Maple软件相结合的方法,研究了一类非线性Schrdinger-Boussinesq方程组的行波解,获得了该方程组在给定参数条件下的所有孤立波解、扭波解、反扭波解和周期波解,并给出了其解的表达式;所得结果推广和丰富了已有文献的相应结果,并且数值模拟验证了方法和结果的正确性。
The traveling wave solutions of a nonlinear Schrodinger-Boussinesq equation are investigated by combining the methods of bifurcation theory of dynamical systems, the qualitative theory and the Maple software. Under the given conditions with different parameters, all exact explicit formulas of all solitary wave solutions, kink and anti-kink solutions and periodic wave solutions are obtained. Meanwhile, the results obtained generalize and enrich some corresponding ones in related literature, and the numerical simulation shows the correctness of the theoretical analysis and the results.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第11期1918-1923,共6页
Journal of Hefei University of Technology:Natural Science
关键词
孤立波解
周期波解
扭波解
反扭波解
分歧理论
动力系统
solitary wave solution
periodic wave solution
kink wave solution
anti-kink wave solution
bifurcation theory
dynamical system