期刊文献+

耦合Schrdinger-Boussinesq方程组的行波解和分歧方法 被引量:1

Bifurcation method and traveling wave solutions for the coupled Schrdinger-Boussinesq equations
下载PDF
导出
摘要 文章应用动力系统分歧理论、定性理论和Maple软件相结合的方法,研究了一类非线性Schrdinger-Boussinesq方程组的行波解,获得了该方程组在给定参数条件下的所有孤立波解、扭波解、反扭波解和周期波解,并给出了其解的表达式;所得结果推广和丰富了已有文献的相应结果,并且数值模拟验证了方法和结果的正确性。 The traveling wave solutions of a nonlinear Schrodinger-Boussinesq equation are investigated by combining the methods of bifurcation theory of dynamical systems, the qualitative theory and the Maple software. Under the given conditions with different parameters, all exact explicit formulas of all solitary wave solutions, kink and anti-kink solutions and periodic wave solutions are obtained. Meanwhile, the results obtained generalize and enrich some corresponding ones in related literature, and the numerical simulation shows the correctness of the theoretical analysis and the results.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第11期1918-1923,共6页 Journal of Hefei University of Technology:Natural Science
关键词 孤立波解 周期波解 扭波解 反扭波解 分歧理论 动力系统 solitary wave solution periodic wave solution kink wave solution anti-kink wave solution bifurcation theory dynamical system
  • 相关文献

参考文献13

  • 1Wang M L.Solitary wave solutions for variant Boussinesq equations[J].Phys Lett A, 1995, 199:169-172.
  • 2Yang L. I,iu J B, Yang K Q. Exact solutions of nonlinear PDE, nonlinear transformations and reduction of nonlinear PDE to a quadrature [J]. Phys. Lett. A, 2001, 278: 267--270.
  • 3Porubov A V. Periodic solution to the nonlinear dissipative equation for surface waves in a convection liquid layer[J]. Phys Lett A, 1996,221(6):391-391.
  • 4Fu Z T, Liu S K. New Jacobian elliptic function expansion and new periodic solutions of nonlinear wave equations[J]. Phys Lett A,2001,290:72-76.
  • 5Li J B, Liu Z R. Smooth and non smooth traveling waves in a nonlinearly dispersive equation [J]. Appl Math Modell, 2000,25:41-56.
  • 6Shen J W. Smooth and non smooth traveling waves in a nonlinearly dispersive Boussinesq equation[J]. Chaos Solitons & Fractals. 2005,223 : 117-- 147.
  • 7Shen J W, Miao B J,Guo L I.. Bifurcation analysis of trave ling wave solutions in the nonlinear Klein-C;ordon mode with anharmonic coupling[J]. Appl Math Comput, 2007, 188: 1975- 1983.
  • 8Rao N N. Near-magnetosonic envelope upper hydrid waves [J]. Journal of Plasma Physics, 1988,39: 385--405.
  • 9陈翰林,许镇辉.耦合Schrdinger-Boussinesq方程组的显式精确解[J].应用数学学报,2006,29(5):955-960. 被引量:10
  • 10Zhang G R, Li Z B. Duan Y S. Exact soliton solutions of the nonlinear wave equations [J]. Science China (Series A), 2000,30:1103-1108.

二级参考文献13

  • 1Zhou Y B,Wang M L,Wang Y M.Periodic Wave Solutions to a Coupled Kdv Equations with Variable Coefficients.Phys.Lett.A,2003,308:31-36
  • 2Rao N N.Near-magnetosonic Envelope Upper-hybrid Waves.J.Plasma Phys,1988,39:385-405
  • 3Hase Y,Satsuma J.An N-soliton Solution for the Nonlinear Schr(o)dinger Equation Coupled to the Boussinesq Equation.J.Phys.Soc.Jpn,1988,57:679-682
  • 4Melnikov V K.Reflection of Waves in Nonlinear Integrable Systems.J.Math.Phys,1987,28:2603-2609
  • 5Matsuno Y.Kadomtsev-petviashvili Equation with a Source and Its Soliton Solution.J.Phys.A,1990,23:1235-1239
  • 6Wang X Y,Xu B C,Taylar P L.Exact Soliton Solutions for a Class of Coupled Field Equations.Phys.Lett.A,1993,173:30-32
  • 7Panigrahy M,Dash P C.Soliton Solutions of a Coupled Field Using the Mixing Exponential Method.Phys.Lett.A,1999,261:284-288
  • 8Zhang G R,Li Z B,Duan Y S.Exact Soliton Solutions of the Nonlinear Wave Equation.Sci.China(Series A),2000,30:1103-1108 (in Chinese)
  • 9Ablowitz M Z,Clarkson P A.Solitons,Nonlinear Evolution Equation and Inverse Scattering.Cambridge:Cambridge Univ.Press,1991
  • 10Liu X Q,Jiang S.The secq-tanhq-method and Its Applicat ions.Phys.Lett.A,2002,298:253-258

共引文献9

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部