摘要
A new method was developed by a thermal wear machine to evaluate the thermal wear of roils in steel rolling process. The steel strip and rolls were simulated by upper and lower heating disks. The upper heating disk could he kept at a temperature of over 900 ℃ by induction heating. The pressure between the disks as high as 323.2 MPa could be achieved and the slipping rate could be 12. 7 %. The thermal wear of high speed steel (HSS) roll material, the wear rate of the HSS roll, and the SEM morphology of a worn HSS roll surface were investigated. This method was useful and could be employed to simulate friction and wear between strip and roll during the strip rolling process.
A new method was developed by a thermal wear machine to evaluate the thermal wear of roils in steel rolling process. The steel strip and rolls were simulated by upper and lower heating disks. The upper heating disk could he kept at a temperature of over 900 ℃ by induction heating. The pressure between the disks as high as 323.2 MPa could be achieved and the slipping rate could be 12. 7 %. The thermal wear of high speed steel (HSS) roll material, the wear rate of the HSS roll, and the SEM morphology of a worn HSS roll surface were investigated. This method was useful and could be employed to simulate friction and wear between strip and roll during the strip rolling process.
基金
Item Sponsored by National Natural Science Foundation of China(50534020)