期刊文献+

双向小波的快速分解和重构算法 被引量:6

Fast Algorithm of Two-Direction Wavelet
下载PDF
导出
摘要 在杨守志教授提出双向加细函数和双向小波定义,并建立双向多分辨分析的基础上,给出正交双向多分辨分析的定义和双向小波的快速分解和重构算法. The concepts of two-direction refinable function and two-direction wavelet are introduced by Professor Yang Shouzhi in his paper Two-direction refinable functions and two-direction wavelets with dilation factor m. The definition of the two-direction multi-resolution analysis is also given. As the more general situation of the traditional wavelet, the two-direction wavelet plays an important role in signal processing. The definition of orthogonal two-direction multi-resolution analysis is given and the fast decomposition algorithm and restructuring algorithm are shown.
作者 李万社 朱岩
出处 《汕头大学学报(自然科学版)》 2008年第4期1-7,15,共8页 Journal of Shantou University:Natural Science Edition
基金 国家自然科学基金资助项目(10571113)
关键词 双向加细函数 双向小波 塔式算法 多分辨分析 two-direction refinable function two-direction wavelet pyramid algorithm MRA
  • 相关文献

参考文献13

  • 1Daubechies I.Ten Lectures on wavelets[M].北京:国防工业出版社,2004.
  • 2Ozkaramanli H, Bilgehan B. Construction of multi-wavelets from compactly supported refinable super functions[J]. Digital Signal Processing, 2003(13): 470-494.
  • 3Nelson J D B. A wavelet filter enhancement scheme with a fast integral B-wavelet transform and pyramidal multi-B-wavelet algorithm[J]. Appl Comput Hamon Anal, 2005, 18(3): 234-251.
  • 4Jiang Q T. Parameterization of M-channel orthogonal muhiwavelets banks[J]. Adv Comp Math, 2000, 12(2-3): 189-211.
  • 5杨守志,彭立中.基于重数延长法提升加细向量函数的逼近阶[J].中国科学(A辑),2005,35(12):1347-1360. 被引量:3
  • 6Yang S Z. A fast algorithm for constructing orthogonal muhiwavelets[J]. Anziam J, 2004, 46(2): 185-202.
  • 7Lian J A. Orthogonality criteria for multi-scaling functions[J]. Appl Comput Hamon Anal, 1998, 5 (3): 277-311.
  • 8Cabrelli C, Hell C, Molter U. Accuracy of lattice translation of several multidimensional refinable function[J]. J Approx Theory, 1998, 95(1): 50-52.
  • 9Zhou X L Subdivision schemes with nonnegative masks[J]. Math Comp, 2005, 74(250): 819-839.
  • 10Melkman A A. Subdivision schemes with nonnegative masks always converge-unless they obviously cannot[J]. Ann Numer Math, 1997, 4(1-4): 451-460.

二级参考文献41

  • 1杨守志,彭立中.基于重数延长法提升加细向量函数的逼近阶[J].中国科学(A辑),2005,35(12):1347-1360. 被引量:3
  • 2Vetterli M. Perfect reconstruction FIR filter banks: Some properties and factorization. IEEE Trans Acoust Speech Signal Process, 1989, 37:1057-1071.
  • 3Jia R Q, Zhou D X. Convergence of subdivision schemes associated with nonnegative masks. SIAM J Matrix Anal Appl, 1999, 21:418-430.
  • 4Han B, Jia R Q. Multivariate refinement equations and convergence of subdivision schemes. SIAM J Math Anal, 1998, 29:1177-1199.
  • 5Han B. Vector cascade algorithms and refinable function vectors in Sobolev spaces. J Approx Theory,2003, 124:44-88.
  • 6Han B, Mo Q. Multiwavelet frames from refinable function vectors. Adv Comp Math, 2003, 18:211-245.
  • 7Zhou D X. Interpolatory orthogonal multiwavelets and refinable functions. IEEE Trans Signal Processing,2002, 50:520-527.
  • 8Chui C K, Lian J A. A study on orthonormal multiwavelets. J Appl Numer Math, 1996, 20:273-298.
  • 9Yang S Z, Cheng Z X, Wang H Y. Construction of biorthogonal multiwavelets. J Math Anal Appl, 2002,276:1-12.
  • 10Yang S Z. A fast algorithm for constructing orthogonal multiwavelets. ANZIAM Journal, 2004, 46:185-202.

共引文献31

同被引文献35

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部