期刊文献+

一种基于种群多样度的实数编码并行遗传算法 被引量:2

A real coding parallel genetic algorithm based on diversity of population
下载PDF
导出
摘要 为了改善遗传算法的收敛性能,提出了一种基于个体适应度的种群多样性度量函数,恰当地反映了遗传算法的进化阶段,预报了早熟收敛的趋势.设计了基于种群多样度函数的迁移算子和交叉算子,并对交叉、变异概率等进行了动态调整,构成了具有多层迁移特点的实数编码并行遗传算法.通过和其他优秀遗传算法对测试函数的验证比较,结果表明,该算法对于解决遗传算法中早熟、收敛速度慢等问题具有优越的性能. In order to improve the convergence performance of genetic algorithms, a function measuring population diversity on the basis of the degree of individual adaptability was needed. This measuring function must reflect the evolutionary stage of the genetic algorithm and forecast premature trends appropriately. We designed a migration operator and crossover operator based on diversity of population functions, and made dynamic adjustments on crossover and mutation probabilities. This structured a parallel genetic algorithm with real coding and a multi-layer migration operator. Comparative experiments were made on benchmark functions. The results showed that this algorithm is obviously superior to other genetic algorithms in overcoming problems such as prematurity and slow convergence.
出处 《智能系统学报》 2008年第5期423-428,共6页 CAAI Transactions on Intelligent Systems
基金 黑龙江省自然科学基金资助项目(A200419)
关键词 遗传算法 种群多样性 迁移算子 实数编码 genetic algorithm diversity of population migration operator real coding
  • 相关文献

参考文献6

  • 1[1]HOLLAND J H.Adaptation in natural and artificial systems[M].Cambridge,Massachusetts:MIT Press,1992:87-95.
  • 2[2]LIENIG J.A parallel genetic algorithm for performance driven VLSI routing[J].IEEE Trans on EC,1997,1(1):29-39.
  • 3[4]AKIRA S.Experimental results in distributed genetic algorithms[C]// Applied Corporate Computing.Monterrey,Mexico,1994:99-108.
  • 4[5]BRAUN H.On solving trasvelling salesman problems by genetic algorithms[M].Berlin:Springer-Verlag,1991:129-133.
  • 5[6]KROGER B,SCHWENDERLING P,VORNBERGER O.Parallel genetic packing of rectangles[M].Berlin:Springer-Verlag,1991:160-164.
  • 6[7]SRINIVAS M,PATNAIK L M.Adaptive probabilities of crossover and mutation in genetic alogorithms[J].IEEE Transanctions on Systems,Man and Cybernetic,1994,24(4):655-677.

同被引文献35

  • 1孙晓燕,巩敦卫,杜学艳.基于连接识别的协同进化种群分割算法研究[J].控制与决策,2005,20(6):702-705. 被引量:2
  • 2许耀华,胡艳军,张媛媛.基于离散粒子群算法的CDMA多用户检测方法[J].通信学报,2005,26(7):109-113. 被引量:11
  • 3Tseng Lin-Yu, Chen Chun. Multiple trajectory search for large scale global optimization [C]. IEEE Congress on Evolutionary Computation,2009:3052-3059.
  • 4Frans van den Bergh,Andries P.A cooperative approach to particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004(3):225 -239.
  • 5Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization, 1997,11 (4):341-359.
  • 6Andreas C Nearchou, Sotiris L Omirou.Differential evolution for sequencing and scheduling optimization [J]. Journal of Heuristics,2006,12(6):395-411.
  • 7GU Wei,ZHANG Weiguo.Based differential evolution k-means algorithm for fault clustering on flight control system[C].Proceedings of the 8th International Symposium on Test and Measurement,2009.
  • 8Tsuji miwako,Munetomo masaharu.Parallelization of a genetic algorithm using linkage identification and context dependent crossover[J].IPSJ SIG Notes,2007(128): 171-174.
  • 9吴启迪,康琦,汪镭,等.自然计算导论[M].上海:上海科学技术出版社,2011:1-10.
  • 10于万霞,张维存,郑宏兴.基于遗传粒子群算法的高维复杂函数优化方法[J].计算机工程与应用,2007,43(36):31-33. 被引量:7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部