期刊文献+

基于压电元件的主动弹性隔振系统理论与试验 被引量:2

Theory and Experiment of the Active-flexible-isolation System Based on Piezoelectric Elements
下载PDF
导出
摘要 基于力作动器的传统主动隔振理论已得到广泛研究和较多应用,但要求较高的作动器功率,因此限制了较小功率的压电元件在主动隔振上的应用。将压电元件粘贴于一定形状的弹性元件上,构造成主动弹性隔振器件,使其具有传统被动弹性隔振器与主动隔振器两者的优点。通过综合考虑隔振系统的性能指标与主动弹性隔振器的自身能力,建立主动弹性隔振系统的理论模型,推导并分析反馈控制、前馈控制在主动弹性隔振系统中的应用框架。试验研究基于压电元件的Z形主动弹性隔振系统,通过采用粘贴其上的压电元件作为隔振器的作动器与检测隔振器内部性能的传感元件,用加速度信号作为隔振系统性能指标信号,分别采用前馈与反馈控制算法有效地实现了振动源的隔离。 The theory and practice oftraditional active vibration isolation based on force actuator have been studied widely, but the capacity of force actuator limits the use of piezoelectric element in the active vibration isolation. The active-flexible-isolation system which is coustructed by piezoelectric elements bonded on an elastic element with certain shape has the advantages of both passive isolation element and active isolation. The model of the active-flexible-isolation system is established based on the index of isolation system and the self-ability of active-flexible-isolation. The application framework of feedforward control and feedback control in the active-flexible-isolation is analyzed. The Z shape active-flexible-isolation system which adopts piezoelectric elements bonded on the flexible element as actuators and sensors to detect the capacity of the isolation system and uses acceleration signal as the index of isolation system has been experimented. The experimental results show vibration can be suppressed by feedforward control and feedback control.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第11期283-289,共7页 Journal of Mechanical Engineering
基金 江西省自然科学基金资助项目(2007GQC0863)
关键词 主动弹性隔振系统 压电元件 主动隔振 前馈算法 反馈算法 Active-flexible-isolation system Piezoelectric elements Active vibration isolation Feedforward controlFeedback control
  • 相关文献

参考文献9

  • 1汉森CH 斯奈德SD.噪声和振动的主动控制[M].北京:科学出版社,2002..
  • 2FALANGAS E T, DWORAK J A, KOSHIGOE S. Controlling plate vibrations using piezoelectric actuators[J]. IEEE Control System, 1994,14(4): 34-41.
  • 3FALANGAS E T. A vibration isolation system using active PZT brackets[C]//American Automatic Control Council. Proceedings of the American Control Conference, June 29-July 1, 1994, Baltimore, Maryland. New York: IEEE, 1994, 1: 676-680.
  • 4KWAK M K, HEO S, KIM S R. Development of the active vibration isolation device using PZT wafers[C]//AGENS G S, WANG K W. Smart Structures and Materials 2003: Damping and Isolation. March 2-6, 2003, San Diego, California USA. Washington: SPIE, 2003, 5052: 27-35.
  • 5KWAK M K, KWAK M H, HEO S. Development of the passive-active vibration absorber using piezoelectric actuators[C]//AGENS G S. Smart Structures and Materials 2002: Damping and Isolation. March 17-21, 2002, San Diego, California USA. Washington: SPIE, 2002, 4697: 292-300.
  • 6SOONG T T, DARGUSH G F. Passive Energy dissipation systems in structural engineering[M]. New York: Wiley, 1997.
  • 7ADACHI K, KITAMURA Y, IWATSUBO T. Integrated design of piezoelectric damping system for flexible structure[J]. Applied Acoustics, 2004, 65(3): 293-310.
  • 8MARSH B, WARKENTIN D J, ASHTIANI M. Use Of active structural control for isolation[C]// DAVIS L P. Smart Structures and Materials 2001:Smart Structures and Integrated Systems, March 4-8, 2001, Newport Beach, CA, USA. Washington: SPIE, 2001, 4327: 600-609.
  • 9PREUMOT A. Responsive system for active vibration control[M]. Netherlands: Kluwer Academic Publishers, 2002.

共引文献17

同被引文献27

  • 1张培军,何琳,帅长庚,李彦.主动隔振系统解耦控制算法仿真与试验研究[J].振动与冲击,2013,32(19):192-196. 被引量:6
  • 2张天飞,汪鸿振,孙曜.超磁致伸缩作动器用于振动主动控制中的仿真研究[J].振动与冲击,2006,25(1):61-63. 被引量:11
  • 3Loui A, Goericke F T, Ratto T V, et al. The Effect of Piezoresistive Microcantilever Geometry on Cantilever Sensitivity during Surface Stress Chemical Sensing [J].Sensors and Actuators, 2008, 147(2): 516-521.
  • 4Kleinke D K, Uras H M. A Magnetostrictive Force Sensor [J]. Review of Scientific Instruments, 1994, 65(5): 1699-1710.
  • 5Baillargeon B P, Vel S S. Active Vibration Sup- pression of Sandwich Beam Using Piezoelectric Shear Actuators: Experiments and Numerical Sim- ulations[J].Journal of Intelligent Material Systems And Structures, 2005, 16(6): 517-530.
  • 6Bartlett P A, Katransa G S, Meydan T. A Hybrid Magnetic Sensor System for Measuring Dynamic Forces [J]. IEEE Transactions on Magnetics, 2006, 42(10): 3288-3290.
  • 7Yang Qingxin, Yan Rongge, Fan Changzai, et al. A Magneto-mechanical Strongly Coupled Model for Giant Magnetostrictive Force Sensor[J].IEEE Transactions on Magnetics, 43(4) : 1437-1440.
  • 8Downey P R, Flatau A B. Magnetoelastic Bending of Galfenol for Sensor Applications[J]. Journal of Applied Physics, 2005, 97(10): 1-3.
  • 9Datta S, Atulasimha J, Flatau A B. Modeling of Magnetostrictive Galfenol Sensor and Validation Using Four Point Bending Test [J]. Journal of Applied Physics, 2007,101(9): 1-3.
  • 10Evans P G, Dapino M J. Stress-dependent Suscep- tibility of Galfenol and Application to Force Sens ing[J]. Journal of Applied Physics, 2010, 108 (7) : 1-7.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部