摘要
应用上、下解方法和抛物型方程的极值原理,研究了带存放率的周期竞争系统u_t-D_1△u=u(a-bu-cv)+h,v_t-D2△v=v(d-eu-fv)+k在齐次Neumann边界条件下解的渐近性态,得到了该系统的全局渐近性.
In this paper, the asymptotic behaviour of solutions of periodic competition diffusion system with depositings ut-D1Δu=u(α-bu-cv)+h,vt-D2Δv=v)d-eu-fv)+k with homogeneous Neumann boundary condition is considered by using the method of upper and lower solutions and the parabolic maximum principle, and the global asymptotic stability of this system is obtained.
出处
《生物数学学报》
CSCD
北大核心
2008年第3期463-472,共10页
Journal of Biomathematics
关键词
周期竞争扩散系统
稳定共存
上、下解
抛物型方程的最大值原理
Periodic competition diffusion system
Stable coexistence
Upper and lowersolutions
Parabolic maximum principle