摘要
针对基本蚁群算法存在收敛速度慢,易陷于局部最优解等缺点,提出了一种求解旅行商(TSP)问题的改进蚁群算法。通过在基本蚁群算法中提出保留最优解和引入个体差异策略的改进方法,有效地抑制了算法收敛过程中的停滞现象,提高了全局搜索能力和解的质量。TSPLIB的实例验证了该改进算法的有效性。
Introduces an improved ant colony algorithm to solve the traveling salesman problem(TSP) for reducing the deficiency of traditional ant algorithm for slow convergence and local optimal solution. The improved ant colony algorithm which introduces reserving optimal solution and individual variation to traditional ant algorithm can conquer stagnation and optimize solution. The simulation experiment shows the validity for this improved algorithm in TSPLIB.
出处
《计算机技术与发展》
2008年第12期50-52,共3页
Computer Technology and Development
基金
中国工程物理研究院面上基金资助项目(20060324)
关键词
蚁群算法
旅行商问题
最优解
个体差异策略
ant colony algorithm
traveling salesman problem
optimal solution
individual variation