期刊文献+

基于小波重构的木材表面缺陷检测系统研究 被引量:2

Wood Surface Texture Inspection System Based on Wavelet Reconstruction
下载PDF
导出
摘要 设计了木材加工业中木材纹理表面的检测系统,提出了一种有效的选取小波频带重建图像的纹理瑕疵检测方法。设计的检测系统由新型LED光源,明暗域结合成像光学系统,高速高分辨率线阵CCD器件等组成。应用小波基函数在较优的分解级数上对纹理图像进行分解,然后在最佳的分辨率级数上正确选取平滑图像或者细节图像来重建图像。在重建图像中均匀纹理图案被有效地移除,仅仅保留了局部瑕疵区域,小波频带选取是基于小波系数的能量分布自动确定最佳重构参数。重构后的图像经阈值处理得到二值图像,最后运用数学形态学的方法对二值图像后处理。实验表明,该方法可用于实时在线检测木材表面的瑕疵。 The wood surface texture inspection method in wood machining industries is introduced. This inspection method consists of a new LED line light source, bright and dark tield combined imaging optical system, high speed anu high resolution linear array CCD sensor. First, the texture image is decomposed by using wavelet base function in terms of the optimum decomposition levels, and then the restoration image can be reconstructed by properly selecting the smooth subimage or the detail subimages at best resolution levels. The homogeneous texture pattern can be effectively removed and only local defects are preserved in the restored image. A subband selection procedure is developed to automatically determine the best reconstruction parameters based on the energy distribution of wavelet coefficients. Then binarized image is received after image segmentation. At last the methods of image post-processing mathematical morphology are used in segmentation image. Experiments demonstrate the validity of the method, and show the potential possibility of real-time processing in an on-line wood surface inspection.
出处 《光学与光电技术》 2008年第6期16-19,共4页 Optics & Optoelectronic Technology
关键词 线阵CCD 木材表面检测 瑕疵检测 小波重构 linear array CCD wood surface inspection defect detection wavelet reconstruction
  • 相关文献

参考文献9

  • 1黎明,马聪,杨小芹.机械加工零件表面纹理缺陷检测[J].中国图象图形学报(A辑),2004,9(3):318-322. 被引量:35
  • 2[3]J G Daugman.Uncertainty relation for resolution in space,spatial-frequency,and orientation optimized by two dimensional visual cortical filters[J].J.Opt.Soc.,1985,2(7):1160-1169.
  • 3[4]J Escofet,R B Navarro,M S Millan,et al.Detection of local defects in textile webs using Gabor filter[C].SPIE,1996,2334:163-170.
  • 4[5]Kumar,Pang G.Defect detection in textured materials using Gabor filters[J].IEEE,2002,38(2):425-440.
  • 5[6]H Y T Ngan,Grantham K,H Pang.Wavelet based methods on patterned fabric defect detection[J].Pattern Recognition,2005,38(4):559-576.
  • 6[7]Kumar A,Pang G.Defect detection in textured materials using optimised filters[J].IEEE,2002,32(5):55-58.
  • 7[8]Michael Becker,Ralph Foehr,Friedrich Luecking.Steel mill defect and classification of 3000ft./min.using mainstream technology[C].SPlE,1998,3303:20-26.
  • 8邹丽晖,白雪冰.数学形态学在木材表面缺陷图像分割后处理中的应用[J].林业机械与木工设备,2006,34(12):40-42. 被引量:10
  • 9[10]Tsai D M S K.Automated surface inspection using Gabor filters[J].International Journal of Advanced Manufacturing Technology,2000,16(7):474-482

二级参考文献7

  • 1王树文,闫成新,张天序,赵广州.数学形态学在图像处理中的应用[J].计算机工程与应用,2004,40(32):89-92. 被引量:200
  • 2Brzakovic D, Vujovic N. Designing a defect classification system: A case study[J]. Pattern Recognition. 1996, 29(8):1401-1419.
  • 3Hong K, Wen W, Nachimuthu A, et al. Achieving automation in leather surface inspection[J]. Computer in Industry. 1997. 34(2):43-54.
  • 4Ramana K V, Ramamoorthy B. Statistical methods to compare the texture features of machined surfaces[J]. Pattern Recognition. 1996, 19(9):1447-1459.
  • 5Lin T Y, Lu S H, Stout K J. Model-based topography characterization of machined surfaces in three dimensions[J].International Journal of Machine Tools and Manufacture. 1995,35(2):239-245.
  • 6Linnett I. M, Carmichael D R, Clarke S J. Texture classification using a spatial-point process model[J]. IEE Proceedings Vision.Image and Signal Processing. 1995, 142(1):1-6.
  • 7刘真,李绿江.用数学形态法清除图像噪声的新算法[J].中国传媒大学学报(自然科学版),1996,7(2):28-36. 被引量:1

共引文献43

同被引文献27

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部