期刊文献+

组合导航自适应交互多模型算法研究 被引量:9

Research on algorithm of adaptive interacting multiple model for integrated navigation system
下载PDF
导出
摘要 针对交互多模型(IMM)方法模型集覆盖能力与计算量相矛盾的问题,提出了将简化的Sage-Husa自适应滤波与IMM相结合,构成一种自适应交互多模型的方法。简化的Sage-Husa自适应滤波首先给出噪声统计特性的粗略值,IMM方法以该粗略值为中心,对称地得到模型集,再进行IMM估计。车载组合导航仿真表明,该算法能够以较少的模型实现对实际模态的覆盖,而且精度比IMM方法也进一步提高。 The interacting multiple model (IMM) estimator has the defect that the more sub-models, the worse real-time performance. An adaptive interacting multiple model (AIMM) algorithm is presented, which combines the IMM algorithm with the simplified Sage-Husa adaptive filtering algorithm. The Sage-Husa adaptive filter is used to estimate the rough value of measurement noise statistical characteristics. The parameters of sub-models are calculated by the rough value and then are fed into the sub-filters in IMM algorithm, where the sub-filters have different parameters of noise. Simulation results of land vehicle integrated navigation show that the AIMM algorithm can achieve the coverage of real situation through a few sub-models, and the accuracy is higher than the IMM algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第11期2070-2074,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60774065) 国家"863"高技术计划基金(2006AA12Z305)资助课题
关键词 组合导航 交互多模型 Sage-Husa自适应滤波 INS/GPS integrated navigation system interacting multiple model Sage-Husa adaptive filter INS/GPS
  • 相关文献

参考文献9

  • 1Mohamed A H, Schwarz K P. Adaptive Katman filtering for INS/GPS[J]. Journal of Geodesy, 1999,73 : 193 - 203.
  • 2Kennet A, Mayback P S. Multiple model adaptive estimation with filter pawning [J]. IEEE Trans. on Aerospace Electron Syst. , 2002,38(3) :755 - 768.
  • 3Li X R, Bar-Shalom Y. Performance prediction of the IMM algorithms[J]. IEEE Trans. on AES, 1993, 29(3) : 755 - 770.
  • 4Dongliang Huang, Henry Leung. EM-IMM based land-vehicle navigation with GPS/INS[C]//IEEE Intelligent Transportation Systems Conference, Washington, D. C. , USA, 20041624 - 629.
  • 5Chen G, Harigae M. Advanced carrier DGPS/MEMS-IMU integrated navigation with hybrid system models[C] //IEEE Position Location and Navigation Symposium, San Diego, CA, USA 2000 : 443 - 448.
  • 6Rafael T, Miguel A Z, Antonio F G. IMM-EKF based road vehicle navigation with low cost GPS/INS[C]//IEEE Multisensor Fusion and Integration for Intelligent Systems Conference, Heidelberg, Germany, 2006 : 433 - 438.
  • 7Munir A, Atherton D P. Adaptive interacting multiple model algorithm for tracking amanoeuvring target[J].IEE Proc. Radar, Sonar Navig., 1995,142(1):11 -17.
  • 8肖乾.多模型估计理论[J].舰船科学技术,2005,27(2):63-67. 被引量:5
  • 9孙道省,邹志勤.组合导航系统中自适应滤波技术的研究[J].中国惯性技术学报,1999,7(2):26-30. 被引量:2

二级参考文献16

  • 1任光,刘军,于成,赵卫军.随机系统多参考模型卡尔曼滤波器研究.Proceeding of the Third World Congress on Intelligent Control and Automation. June280-July 2, 2000. Hefei, China:2202-2206.
  • 2FARINA A ,PARDINI S. Multi-radar Tracking System Using Radial Velocity Measurement. IEEE Trans. On IT,1993,39(4):1660-1662.
  • 3GANONLAY A. Multiple Platform Sensor Integration Model:MULSIM Computer Program. ADA 079951, Naval Research Laboratory ,31,Dec.1999:1-62.
  • 4王培德.机动目标模型和自适应滤波[M].西北工业大学,1981..
  • 5NAHIN P J, POKOSKI J L . NCTR Plus Sensor Fusion Equals IFNN. IEEE TRans. On AES-16,1980,(3): 320-337.
  • 6GRONDWATER E H. A Demonstration of an Ocean Surveillance Information Fusion Expert System . SATC ,1984,1710 Goodrige Drive ,McLean, VA22101.
  • 7WALTZ E L. Data Fusion for C3I System . Internation C3I Handbook, EW Communications, Palo Alto, CA ,1986.
  • 8DEB S, PATTIPAI K R , BAR-SHALOM A . A multisensor-multitarget data association algorithm for geteragenous sensors[J]. IEEE TRans. On AES .1993 , 29(2):561-568.
  • 9FRITZ R . P-3 Update IV Multi-Sensor Correlation . Proceeding of the 1989 Tri - Sevice Data Fusion Symposium, May 1989, USA:433-439.
  • 10陆凯 田蔚风.最优估计理论及其在导航中应用[M].上海:上海交通大学出版社,1990..

共引文献5

同被引文献81

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部