期刊文献+

基于BP神经网络的CCT曲线预测研究 被引量:3

Study on Forecasting CCT curve Based on BP Nerve Network
下载PDF
导出
摘要 分析影响钢的CCT(过冷奥氏体连续冷却转变)曲线的主要因素,基于BP神经网络算法及特征,建立CCT曲线的预测模型,并建立与之匹配的训练样本集。通过大量的实验,确定稳定的、具有预测功能的网络结构。预测结果能有效解决在无物理实验条件下,初步预测金属材料的组织、性能,为研制新钢材奠定基础。 The forecasting models were built based on algorithm and features of BP nerve network, the main influencing factors of steel's CCT (the austenitic continuous cooling transformation) curve were andyzed. And training stylebooks were established. The stable and useable network structure was ensured by lots of tests. Forecast results can preliminary forecast the microstructure and properties of the steel in the absence of physical experimental conditions. The method lays the foundation for the development of new steel.
出处 《热加工工艺》 CSCD 北大核心 2008年第22期85-87,共3页 Hot Working Technology
关键词 BP神经网络 CCT曲线 预测 BP nerve network CCT curve forecasting
  • 相关文献

参考文献8

二级参考文献25

  • 1朱远志,林启权,尹志民,曾渝,李学谦.2519铝合金高温变形流变应力的人工神经网络模型[J].金属热处理,2004,29(7):20-23. 被引量:9
  • 2赵雪盈,郭鸿镇,姚泽坤,谭勇,王斌,赵静.Ti-1023合金超塑性压缩时的流动应力及显微组织[J].上海金属,2005,27(5):26-30. 被引量:6
  • 3Kirkaldy J S,Venugopalan D.Proceedings of an international conference on phase transformations in ferrous alloys [C].Ohio:AIME,1984:125-148.
  • 4Umemoto M,Hiramatsu A,Moriya A.Computer modeling of phase transformation from work-hardened austenite[J].ISIJ International,1992,32(3):306-315.
  • 5Hildenwall B,Ericsson T.Prediction of residual stresses in case-hardening steels [Z].Pittsberg:TMS-AIME,1978.
  • 6J J Wang,Pieter J van der Wolk,Sybrand van der Zwaag.Effects of carbon concentration and cooling rate on continuous cooling transformations predicted by artificial neural network [J].ISIJ International,1999,39(10):1038-1046.
  • 7Pieter van der Wolk.Modelling CCT-diagrams of engineering steels using neural networks [M].Delft,the Netherlands:Delft University Press,2001:1-44.
  • 8Vermeulen W,Sybrand van der Zwaag,Morris P,et al.Prediction of the continuous cooling transformation diagram of some selected steels using artificial neural networks [J].Steel Research,1997,68(2):72-79.
  • 9Hecht-Nielsen R.Neurocomputing [M].MA:Addison Wesley Publishing Co.Inc,1991:59-63.
  • 10Cybenko G.Approximation by superpositions of sigmoidal function,mathematics of control [J].Signals and Systems,1980,2:303-314.

共引文献28

同被引文献27

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部