期刊文献+

基于灰度形态学累加和SUSAN算法的红外弱小运动目标检测 被引量:1

Dim Small Moving Infrared Target Detection Based on Gray Morphology Multiple Frame Accumulation and SUSAN Algorithm
下载PDF
导出
摘要 本文提出了一种基于灰度形态学累加和SUSAN算法的红外弱小运动目标检测方法。首先利用Butterworth滤波器对原始红外图像进行高通滤波,得到包含少许噪声点和目标点的处理图像;然后,通过基于灰度形态学的多帧累加的方式进一步提高图像的信噪比;最后利用SUSAN检测算子对多帧累加过的红外图像进行分割并将真实目标检测出来。为了提高小目标检测的实时性,给出了基于FPGA+DSP的硬件实现结构。实验表明,该方法能够较好地消除背景和抑制噪声,从而准确有效地检测红外运动弱小目标。 In this paper, a method for detecting dim small moving infrared target based on gray morphological accumulation and SUSAN algorithm is proposed. First, a Butterworth high pass filter is used to process the original infrared image, thus an image containing some noise and target points is obtained. Then, the ratio of signal to noise of the image is further enhanced through the multi-frame accumulation in gray morphology. Finally, the SUNSAN detection algorithm is used to process the image which is multi-frame accumulated and detect the true target. In order to improve the real time performance of small target detection, a hardware structure based on FPGA and DSP is given. The experimental result shows that this method can eliminate background and depress noise effectively and hence detect the moving small infrared target accurately and effectively.
作者 刘刚 梁晓庚
出处 《红外》 CAS 2008年第12期27-32,共6页 Infrared
基金 中国一航集团航空科学基金重点实验室类资助项目(20070112001)
关键词 红外 弱小目标 Butterworth高通滤波 形态学 多帧累加 SUSAN检测 infrared dim small target Butterworth high pass filter morphology multiple frame accumulating SUSAN detect
  • 相关文献

参考文献6

二级参考文献34

  • 1孙伟,夏良正.一种基于形态学的红外目标分割方法[J].红外与毫米波学报,2004,23(3):233-236. 被引量:21
  • 2刘建轶,卢伟,余松煜,李介谷,汤笑笑.低信噪比序列图像中目标检测、识别及跟踪算法的研究[J].红外与激光工程,1996,25(4):27-33. 被引量:8
  • 3彭嘉雄,彭铁.弱目标检测的图像流法[J].红外与激光工程,1996,25(4):34-40. 被引量:28
  • 4Nan He,Haykin S.Chaotic modeling of sea clutter [ J].Electron.Lett.,1992,28(22):2076-2077.
  • 5Leung Henry,Lo Titus.Chaotic radar signal processing over the sea [J ].IEEE J.Oceanic Eng.,1993,18(3):287-295.
  • 6Yang L,Yang J,Yang K.Adaptive detection for infrared small target undersea-sky complex background [ J ].Electron.Lett.,2004,40(17):1083-1085.
  • 7[5]Hansen H, Hansen G, Cyrus Elyashar. Adaptive threshold adjustment and control[A]. SPIE Signal and Data Processing of Small Targets[C]. 1989, 1096. 44-54.
  • 8[7]Choi Jae-ho, Jang Jong-whan, Lee Seung-phil, et al. Multiple moving object estimation in image sequences of natural scene[J]. Opt Eng, 1997, 36(8):2176-2183.
  • 9Smith S M, Brady J M. SUSAN- a new approach to low level image processing.International Journal of Computer Vision, 1997,23(1): 45-78
  • 10Robert Laganière, étienne Vincent. Wedge-based corner model for widely separated views matching. 16th International Conference on Pattern Recognition, Quebec City, Canada, 2002

共引文献255

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部