摘要
The spatial and temporal variations of the instrument-based evaporation and actual evaporation in autumn during a 45-year period from 1960 to 2004 are studied using the observation data from 66 stations over South China. The results reveal that there are two main anomalous centers of the instrument-based evaporation in autumn in the central and northwestern parts of South China respectively. The instrument-based evaporation over the central part of South China in autumn experiences not only a decreasing trend but also a main interdecadal variation. The solar radiation is best correlated with the instrument-based evaporation among all affecting factors. For the actual evaporation, two main anomalous centers are located at the central and western parts of the South China respectively. The actual evaporation over the two regions illustrates an interannual variation. Among the affecting factors, precipitation is the most remarkable. The actual evaporation is usually 40 percent of the instrument-based one, and the overall rate has a slightly increasing trend from the southern part to the northern part of the South China in autumn.
The spatial and temporal variations of the instrument-based evaporation and actual evaporation in autumn during a 45-year period from 1960 to 2004 are studied using the observation data from 66 stations over South China. The results reveal that there are two main anomalous centers of the instrument-based evaporation in autumn in the central and northwestern parts of South China respectively. The instrument-based evaporation over the central part of South China in autumn experiences not only a decreasing trend but also a main interdecadal variation. The solar radiation is best correlated with the instrument-based evaporation among all affecting factors. For the actual evaporation, two main anomalous centers are located at the central and western parts of the South China respectively. The actual evaporation over the two regions illustrates an interannual variation. Among the affecting factors, precipitation is the most remarkable. The actual evaporation is usually 40 percent of the instrument-based one, and the overall rate has a slightly increasing trend from the southern part to the northern part of the South China in autumn.
基金
Significant Technical Addressing Project from Guangdong Bureau of Science and Technology (2007Z1-E0101)