期刊文献+

自学习在模拟连续退火过程控制中的应用 被引量:2

Application of Self-learning to Simulation for Process Control in Continuous Annealing
下载PDF
导出
摘要 以理论分析为基础,构建了模拟连续退火的冷却过程控制数学模型.为了提高自学习效率,提出了将冷却过程中辐射散热等效转化为对流散热系数的观点.模型对试样温度进行层别的划分,并且针对各个温度层别,采用指数平滑处理的方法确定各个温度层别的调整系数.在实际冷却过程中,过程控制系统根据自学习得到的各个温度层别的调整系数实时地调整冷却气体的流量.实际应用表明,以自学习为基础的过程控制系统可使模拟连续退火的冷却过程的温度精度控制在10℃以内. Based on theoretical analysis, a mathematical model was developed to simulate the cooling process control in continuous annealing. To improve the efficiency of self-learning, a viewpoint was suggested that the radiant heat dissipation can be transformed equivalently into the adjustable convective heat dissipation coefficients in cooling process. In the model, the sample temperature is layered and the exponential smoothing is introduced to determine the adjusting coefficients for each and all temperature layers. In the actual cooling process, the flow rate of cooling gas can be adjusted by virtue of the process control system according to the adjusting coefficients for different layers. Application results indicated that process control system based on self-learning enable the temperature accuracy to be controlled within 10℃ in the simulation of cooling process for continuous annealing.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第12期1718-1720,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50527402)
关键词 连续退火 模拟 过程控制 自学习 冷却 continuous annealing simulation process control self-learning cooling
  • 相关文献

参考文献9

  • 1何建锋.冷轧板连续退火技术及其应用[J].上海金属,2004,26(4):50-53. 被引量:33
  • 2de Souza T O, Lopes Buono V T. Optimization of the strain aging resistance in aluminum killed steels produced by continuous annealing[J]. Materials Scienee and Engineering, 2003,354( 1 ) :212 - 216.
  • 3Jiangbo Dai Qingdong Zhang Tiezhu Chang.FEM analysis of large thermo-deflection of strips being processed in a continuous annealing furnace[J].Journal of University of Science and Technology Beijing,2007,14(6):580-584. 被引量:10
  • 4Rocha R O, Melo T M F, Pcreloma E V, et al. Microstructural evolution at the initial stages of continuous annealing of cold rolled dual-phase steel[J]. Materials Science and Engineering A, 2005,391 ( 1/2) : 296-304.
  • 5Yoshitani N. Optimal conrail of steel strip temperature in continuous annealing processes [ M] //Materials Science and Engineering Serving Socicty. Chiba: Elsevier, 1998:303 - 308.
  • 6王永萍,鲍戟,高立.连续退火炉冷却技术的发展和现状[J].工业炉,2002,24(1):21-24. 被引量:26
  • 7Li S Y, Chen Q, Huang G B. Dynamic temperature modeling of continuous annealing furnace using GGAP-RBF neural network[ J ]. Neurocomputing, 2006,69 (4) : 523 - 536.
  • 8Carvalho S R, Ong T H, Guimaraes G. A malheinatical and computational model of furnaces for continuous steel strip processing[J ]. Journal of Materials Processing Technology, 2006,178(1):379-387.
  • 9Azizi N, Zolfaghari S. Adaptive temperature control for simulated annealing: a comparative study[J]. Computers & Operations Research, 2004,31 ( 14 ) :2439 - 2451.

二级参考文献20

共引文献59

同被引文献37

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部