期刊文献+

FPCM算法在织物悬垂性评价方面的应用

Application of FPCM algorithm in fabric drape evaluation
下载PDF
导出
摘要 由于织物悬垂性能评价指标的多维性、数据聚类边界的模糊性,以及测量误差的不可避免,使得数据集通常会含有噪声点,而常用的FCM聚类算法无法消除噪声点对聚类中心的影响。为解决这一问题,提出了采用FPCM算法对悬垂性的测量值进行聚类分析,发现并剔除噪声点,从而更加客观地评价织物悬垂性,并通过实测数据验证了算法的准确性及有效性。 Aiming at the problems that dataset contains noisy points, drape evaluation indexes of fabric is multiple dimensions, data clustering boundaries is fuzzy and the unavoidable measurement error is unavoidable, and commonly used FCM clustering algorithm can't eliminate the serious effect of noisy points on clustering centers, Fuzzy Possibilistic C-Means Clustering algorithm is proposed to analyze and cluster the measured values, discover and eliminate noisy points, accordingly further evaluate fabric drape objectively. Simulation experiments conducted by FPCM algorithm valida- ted its correctness and effectiveness.
出处 《纺织科技进展》 CAS 2008年第6期43-45,共3页 Progress in Textile Science & Technology
基金 北京市教育委员会科技发展计划项目(KM200710012002)
关键词 悬垂性 模糊聚类 噪声点 评价 FPCM drape fuzzy cluster noisy points evaluation Fuzzy Possibilistic C-Means Clustering (FPCM)
  • 相关文献

参考文献3

  • 1[4]Nikhil R Pal.Kuhu Pal,James C Bezdek.A mixed c-means clustering model[C].Barcelona,Spain:Proceedings of the Sixth IEEE International Conference on Fuzzy Systems,Fuzzy Systems,1997,1(1-5):11-21.
  • 2[5]Krishnapuram R,Keller J.A possibilistic approach to clustering[J].IEEE Trans on Fuzzy Systems,1993,1(2):98-110.
  • 3王夕源,赵文贤,关燕,刘鸣玉.织物动态悬垂风格自动测试方法研究[J].纺织学报,1992,13(11):34-36. 被引量:3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部