期刊文献+

一种事务互补挖掘算法的研究及应用 被引量:7

Research and application of transaction complement mining algorithm
下载PDF
导出
摘要 提出一种事务互补的挖掘算法,其适合挖掘任何长度的频繁项目集。该算法用事务互补搜索策略产生候选项,使用频繁项目集修剪其子集和非频繁项目集修剪其超集策略减少候选项;在计算支持数时使用了二进制的逻辑运算和事务特性,提高了算法的效率。将其应用到横向空间关联规则挖掘中,实验表明该算法是快速而有效的。 An algorithm of transaction complement mining is presented,which uses transaction complement search strategy to generate candidate-items,the number of which is reduced by pruning subsets of frequent item sets and superset of non-frequent item sets,and further uses binary logic operation and transaction character to count support,its efficiency is improved.The algorithm is used to extract transverse spatial association rules,and its experiment indicates that the efficiency is fast and efficient.
作者 刘雨露 方刚
出处 《计算机工程与应用》 CSCD 北大核心 2008年第35期168-170,共3页 Computer Engineering and Applications
关键词 数据挖掘 关联规则 二进制 互补挖掘 空间关联 data mining association rules binary complement mining spatial association
  • 相关文献

参考文献7

二级参考文献50

  • 1李天志,梁家荣,范平.基于二进制的集合运算研究[J].计算机工程与应用,2005,41(33):100-102. 被引量:2
  • 2李天志,梁家荣,范平,徐凤生.基于二进制的粗糙集基本运算研究[J].广西科学,2006,13(2):109-112. 被引量:1
  • 3Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C].In :Proc ACM SIGMOD Int Conf Management of Date.Washington D C,1993:207-216.
  • 4Han J Kamber.MData Mining:Concepts and Techniques[M].Beijing: High Education Press,2001.
  • 5Goethals B.Survey on frequent pattern mining[R].Helsinki Institute for information Technology ,Technical report, 2003.
  • 6Park J S,Chen M S,Yu P S.Efficient parallel data mining for association rules[C].In:Proceedings of the 4th International Conference on Information and Knowledge Management, Baltimore. Maryland, 1995:31-36.
  • 7Agrawal R,Shafer J C.Parallel mining of association rules[J].IEEE Transactions on Knowledge and Data Engineering,1996;8(6):962-969.
  • 8Cheung D W,Han J W,Ng V T et al.A fast distributed algorithm for mining association rules[C].In:Proceedings of IEEE 4th International Conference Parallel and Distributed Information Systems,Miami Beach, Florida, 1996 : 31 -44.
  • 9Cheung David W,Ng Vincent T,Fu Ada W.Efficient Mining of Association Rules in Distributed Databases[J].IEEE Transactions On Knowledge And Data Engineering, 1996 ; 8 (6) : 911 -922.
  • 10Cheung D W,Lee S D,Xiao Y Q.Effect of Data Skewness and Workload Balance in Parallel Data Mining[J].IEEE Transactions on Knowledge and Data Engineering.2002;14(3):498-514.

共引文献80

同被引文献19

  • 1吉根林,杨明,宋余庆,孙志挥.最大频繁项目集的快速更新[J].计算机学报,2005,28(1):128-135. 被引量:47
  • 2王佐成,汪林林,薛丽霞,李永树.空间关联规则的双向挖掘[J].计算机科学,2006,33(7):199-203. 被引量:11
  • 3马荣华,何增友.从空间数据库中挖掘频繁邻近类别集的一种新算法[J].武汉大学学报(信息科学版),2007,32(2):112-114. 被引量:8
  • 4Fang Gang,Wei Zu-kuan,Yin Qian.Extraction of spatial association rules based on binary mining algorithm in mobile computing [C]//IEEE Information Conference on Information and Automation.[S.l.]:IEEE Press,2008:1571-1575.
  • 5FANG Gang,WEI Zu-kuan,YIN Qian.Extraction of Spatial Association Rules Based on Binary Mining Algorithm in Mobile Computing[C]//Kumar P R.IEEE Information Conference on Information and Automation.New York:IEEE Press,2008:1571-1575.
  • 6Fang Gang,Wei Zu-Kuan,Yin Qian.Extraction of spatial association rules based on binary mining algorithm in mobile computing[C].IEEE Information Conference on Information and Automation,2008:1571-1575.
  • 7Fang Gang,Wei Zu-kuan,Yin Qian.Extraction of spatial association rules based on binary mining algorithm in mobile computing[C]//IEEE Information Conference on Information and Automation.Zhangjiajie,China:IEEE Press,2008:1571-1575.
  • 8Gang FANG, Zu-Kuan WEI Qian YIN.An algorithm of constrained spatial association rules based on binary[C]//Sun Fuchun, Zhang Jianwei, Tan Ying.Lecture Notes in Computer Science 5264.Berlin: Springer-Verlag, 2008 : 21-29.
  • 9Fang Gang, Wei Zukuan, Yin Qian. Extraction of Spatial Association Rules Based on Binary Mining Algorithm in Mobile Computing [C]//Proc. of IEEE Information Conference on Information and Automation. Zhangjiajie, China: IEEE Press, 2008.
  • 10张雪伍,苏奋振,石忆邵,张丹丹.空间关联规则挖掘研究进展[J].地理科学进展,2007,26(6):119-128. 被引量:30

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部