期刊文献+

非奇异宇宙的理想气体自相似模型 被引量:2

Self-similarity model of nonsingular perfect gas universe
原文传递
导出
摘要 通过引力作用下理想气体运动连续性方程的无量纲化,根据量纲理论Π定理,以尺度因子R(t)为物理量统一度量基准,发现了引力作用下理想气体宇宙模型的自相似性和一系列R(t)的解析解.基于R(t),可建立对应的、具有非欧氏几何特性的均匀膨胀时空坐标系S(t,ξ,θ,φ),并获得一个密度ρ为常数、速度u为零、压强p不为零的理想气体宇宙解.在这个解的形式中,光子红移量z所表现的是光子传播距离r,当红移量z较小时两者成正比(即哈勃定律).由均匀膨胀坐标系还可推导出Robertson-Walker度规(k=-1),计算出标准宇宙模型的坐标空间膨胀率HF与哈勃常数H0的比值随z的增加而显著减小,该结果对应于高红移超新星的"宇宙加速膨胀"效应. The present paper investigates the dimensionless dynamical continuity equation of perfect gas motion in gravitational field. Based on Ⅱ axiom of dimensional theory, self-similarity of perfect gas universe with gravity and a series of exact solutions of R(t) are deduced. Based on R(t), a non-Euclidean homogeneous space-time coordinate system S(t,ξ,θ,φ) can be established. A perfect gas universe solution can be worked out, in which there is a constant density ρ, the velocity u value being zero, and there is a nonzero pressure p. In this solution, the red shift z represents the propagating distance r. When z is much less than 1, it is proportional to r ( Hubble's law). The Robertson-Walker ( k = - 1 ) metric of normal universe model is obtained from homogeneous expanding coordinates, and the ratio of expanding rate HF to the Hubble constant H0 decreases notably as the value of z rises. It corresponds to the "universal accelerated expansion" observed in the spectrum of a high-red-shift supernova.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第12期7955-7962,共8页 Acta Physica Sinica
关键词 宇宙 自相似 哈勃定律 universe, self-similar, Hubble's law
  • 相关文献

参考文献29

  • 1温伯格S..引力论和宇宙论(中译本)..北京:科学出版社,,1980..第468,474,503,529,542,594,720页..
  • 2Slipher V M 1929 Publ. Astron. Soc. Pacific. 41 262
  • 3Hubble E 1929 Proc. Natl. Acad. Sci. 15 168
  • 4Friedmann A 1922 Z. Phys. 10 377
  • 5Mansouri R, Brandenberger R 2000 Large Scale Structure Formation (Kluwer: Academic Publishers) p169
  • 6Schubnell M 2004 AIP Conf. Proc. 698 323
  • 7陆琰.物理,2006,35:261-261.
  • 8莱特A.爱因斯坦与物理百年(中译本).北京:北京大学出版社,2005.第100页.
  • 9Feng B, Zhang X 2003 Phys. Lett. B 570 145
  • 10Huang Q G,Li M 2003 J. High Ener. Phys. 6 14

二级参考文献115

  • 1卞保民,贺安之,李振华,杨玲,张平,沈中华,倪晓武.理想气体一维不定常流自模拟运动的基本微分方程[J].物理学报,2005,54(12):5534-5539. 被引量:6
  • 2[1]Linde A D 1988 Particle Physics and Lnflationary Cosmology (New York:Gordon and Breach)p322
  • 3[2]Wald R M 1977 Space,Time and Gravity (Chicago: The University of Chicago Press) pp24-45
  • 4[3]Hawking S W and Penrose R 1994 The Essence of Spacetime (New York:Princetan University Press)pp19-34
  • 5[4]Strominger V 1996 Phys.Rev.B 87 34Witten G 1996 Nature 96 9
  • 6[6]Winberg S 1972 Gravitation and Cosmology (New York:John Wiley)
  • 7[7]Fang J H 2001 Acta Phys. Sin. 50 1005 (in Chinese)[方键会 2001 物理学报 50 1005]
  • 8[9]Kaneko K 1989 Physica D 34 1
  • 9[11]Li Z C 2003 Acta Phys. Sin. 52 774(in Chinese)[李宗诚 2003 物理学报 52 774]
  • 10[12]Keating J P 1991 Nonlinearity 4 309

共引文献33

同被引文献30

  • 1卞保民,贺安之,李振华,杨玲,张平,沈中华,倪晓武.理想气体一维不定常流自模拟运动的基本微分方程[J].物理学报,2005,54(12):5534-5539. 被引量:6
  • 2卞保民,杨玲,张平,纪运景,李振华,倪晓武.理想气体球面强冲击波一般自模拟运动模型[J].物理学报,2006,55(8):4181-4187. 被引量:3
  • 3泽尔道维奇 张树材(译).激波和高温流体动力学现象物理学[M].北京:科学出版社,1985.288.
  • 4温伯格S 邹振隆等(译).引力论和宇宙论[M].北京:科学出版社,1980..
  • 5Grun J, Stamper J, Manka C, et al. Instability of Taylor-Sedov blast waves propagating through a uniform gas. Phys Rev Lett, 1991, 66:2738-2741.
  • 6Edens AD, Ditmire T, Hansen JF, et al. Study of high Mach number laser driven blast waves. Phys Plasmas, 2004, 11:4968-4972.
  • 7Maeda H, Harada T. Critical phenomena in Newtonian gravity. Phys Rev D, 2001, 64:124024.
  • 8Cahill ME, Taub AH. Spherically symmetric similarity solutions of the Einstein field equations for a perfect fluid. Commun Math Phys, 1971, 21:1-40.
  • 9Maeda H, Harada T. Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity. Class Quantum Gray, 2004, 21:371-389.
  • 10Harada T. Final fate of the spherically symmetric collapse of a perfect fluid. Phys Rev D, 1998, 58:104015.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部