期刊文献+

基于多小波域SOT结构的SAR图像去噪与压缩算法

SAR image denoising and compression algorithm based on spatial-orientated tree in multiwavelet domain
下载PDF
导出
摘要 合成孔径雷达(SAR)图像固有的相干斑噪声严重影响了SAR图像的判读和进一步压缩处理,提出一种在多小波域将空间方向树(SOT)去噪与压缩相结合的SAR图像压缩算法。首先利用SOT对高频子带的多小波系数进行软阈值去噪,滤除相干斑噪声;然后采用改进的多级树集合分裂(SPIHT)算法编码形成嵌入式码流。利用大量的机载SAR图像对该算法进行了仿真验证,实验结果表明采用该算法进行SAR图像压缩提高了重建图像的PSNR,同时对相干斑噪声进行了有效的抑制。 Speckle noise inherent in synthetic aperture radar(SAR) image severely decreases the image interpretation quality and affects further compression processing. This paper presented a new compression algorithm for SAR image based on spatialorientated tree(SOT) structure in multiwavelet domain combining with speckle nosing. At first utilized the SOT to normalize the muhiwavelet coefficients in high frequency band and removed the signal-dependence of the speckle noise. Then coded multiwavelet coefficients by modified set partitioning in hierarchical trees(SPIHT) algorithm to form embedded bit stream. Large numbers of airborne SAR images validated the efficiency of the proposed algorithm. The experimental results show this coding method achieves favorable peak signal to noise ratio(PSNR) and superior speckle noise reduction performances.
出处 《计算机应用研究》 CSCD 北大核心 2008年第12期3680-3682,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60472048,60402025) 哈尔滨理工大学校青年科学基金资助项目(2008XQ-JZ023)
关键词 图像压缩 多小波变换 空间树结构 多级树集合分裂 image compression multiwavelet transform spatial-orientated tree structure set partitioning in hierarchical trees
  • 相关文献

参考文献8

  • 1MVOGO J,MERCIER G, ONANA V P, et al. A combined speckle noise reduction and compression of SAR images using a multiwavelet based method to improve codec performance [ C ]//Proc of International Geoscience and Remote Sensing Symposium. Sydney: Institute of Electrical and Electronics Engineers Inc,2001:103-105.
  • 2SVEINSSON J R, BENEDIKTSSON J A. Speckle reduction and enhancement of SAR images using multiwavelets and adaptive thresholding [ C ]//Proc of the 5 th International Conference on Image and Signal Processing for Remote Sensing. Bellingham : Society of Photo-Optical Instrumentation Engineers, 1999:239- 250.
  • 3SVEINSSON J R, HRAFNKELSSON A M, BENEDIKTSSON J A. Multiple wavelet transform for speckle reduction of SAR images [ C ]// Proc of International Geoscience and Remote Sensing Symposium. Hamburg: Institute of Electrical and Electronics Engineers Inc, 1999 : 1321-1324.
  • 4THAM J Y, SHEN Li-xin, LEE S L, et al. General approach for analysis and application of discrete muhiwavelet transforms[ J]. IEEE Trans on Signal Processing,2000,48 (2) :457-464.
  • 5SAID A, PEARLMAN W A. New, fast and efficient image codec based on set partitioning in hierarchical trees [ J ]. IEEE Trans on Circuits and Svstem for Video Technoloav. 1996.6 ( 3 ) :243-250.
  • 6PENG Cheng, CHAN A. Speckle noise removal in SAR image based on SOT structure in wavelet domain [ C ]//Proc of International Geoscience and Remote Sensing Symposium. Sydney : Institute of Electrical and Electronics Engineers Inc, 2001:3039-3041.
  • 7张绘,张弓,郭琦南.基于Contourlet域SOT结构的SAR图像相干斑抑制算法[J].南京航空航天大学学报,2006,38(6):743-748. 被引量:2
  • 8MARTIN M B, BELL A E. New image compression techniques using multiwavelets and multiwavelet packets[ J]. IEEE Trans on Image Processing,2001,4(10) :500-510.

二级参考文献19

  • 1Shapiro J M.Embedded image coding using zerotrees of wavelet coefficients[J].IEEE Trans on Signal Processing,1993,41(12):3445-3462.
  • 2Amir Said,Pearlman W A.A new,fast and efficient image codec based set partitioning in hierarchichical trees[J].IEEE Trans on Circuits and Systems for Video Technology,1996,6(3):243-250.
  • 3Cheng Peng,Chan A.Speckle noise removal in SAR image based on SOT structure in wavelet domain[C]//Geoscience and Remote Sensing Symposium.Sydney,Australia:[s.n.],2001,7:3039-3041.
  • 4Minh N Do.Directional multiresolution image representations[D].Lausanne:Audio-Visual Communication Laboratory,Swiss Federal Institute of Technology,2001.
  • 5Lee J S,Jukevich I.Speckle filtering of synthetic aperture radar images[J].Computer Graphic and Image Processing,1981,17(1):24-32.
  • 6Touzi R.A review of speckle filtering in the context estimation theory[J].IEEE Trans on Geoscience and Remote,2002,40(11):2392-2404.
  • 7Xie Hua,Ulaby F T,Pience L E.Performance metrics for SAR speckle-suppression filters[C]//IGARSS99 Proceedings.Hamburg,Germany:[s.n.],1999,3(28-2):1540-1542.
  • 8Zhong Guangjun,Cheng Lizhi,Chen Huowang.A simple 9/7-tap wavelet filter based on lifting scheme[C]//Proceedings of IEEE International Conference on Image Processing.Thessaloniki,Greece:[s.n.],2001:249-252.
  • 9Minh N Do,Vetterli M.Contourlets:A directional multiresolution image representation[C]//IEEE Int.Conf on Image Processing.New York,USA:IEEE,2002:357-360.
  • 10Candes E J.Ridgelets:theory and applications[D].San Fransico,USA:Department of Statistics,Stanford University,1998.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部