期刊文献+

基于人工智能的矿井主通风机建模研究

Study on modeling of mine main ventilator base on artificial intelligence
下载PDF
导出
摘要 矿井主通风机风量、风速等参数与瓦斯浓度及其它工况密切相关,参数复杂,建立其非线性数学模型比较困难,传统的辨识方法无法精确描述模型特性,文章将神经网络和模糊系统应用于矿井主通风机的模型辨识。神经网络辨识采用了一种基于径向基(RBF)的神经网络、模糊辨识采用了一种基于三角形隶属函数的T—S模糊模型。仿真结果表明,这两种方法可以同时满足对辨识精度、收敛速度、稳定性和跟踪能力的要求。 The air flow, air velocity and other parameters of the mine main ventilator are closed related to the gas density and other performances. Due to the parameter complicated, to set up a nonlinear mathematic model would be quite difficult. The conventional identification method could not accurately describe the model features. The neural network and fuzzy system were applied to the model identification of the mine main ventilator. The neural network base on RBF was adopted to the neural network identification and a T - S fuzzy model base on the delta membership function was adopted to the fuzzy identification. The simulation results showed that both two methods in the paper could all meet the requirements of the identification accuracy, convergence rate, stability and tracing ability.
出处 《煤炭工程》 北大核心 2008年第12期80-83,共4页 Coal Engineering
关键词 通风机模型 系统辨识 径向基神经网络 T—S模型 ventilator model system identification RBF - neural network T - S model
  • 相关文献

参考文献9

二级参考文献21

  • 1陈大光,韩凤学,唐耿林.多状态气路分析法诊断发动机故障的分析[J].航空动力学报,1994,9(4):349-352. 被引量:34
  • 2王欣峰,高伟.基于RBFNN的伺服系统在线辨识方法[J].微计算机信息,2005,21(11S):86-87. 被引量:5
  • 3蒲春,孙政顺,赵世敏.Matlab神经网络工具箱BP算法比较[J].计算机仿真,2006,23(5):142-144. 被引量:68
  • 4常晓丽.基于Matlab的BP神经网络设计[J].机械工程与自动化,2006(4):36-37. 被引量:26
  • 5Park M,Fuzzy Sets and Systems,1999年,104卷,2期,169页
  • 6Cao S G,Automatic,1997年,33卷,6期,1017页
  • 7Cao S G,Int J Syst Sci,1996年,7卷,2期,193页
  • 8Yongsheng Ding Hao Ying Typical Takagi-Sugeno PI and PD fuzzy controllers:analytical structures and stability analysis [J].Information Science 151(2003):245-262
  • 9A Nonlinear Fuzzy Controller with Linear Control Rules is the Sum of Global Two-dimensional Multilevel Relay and a Local Nonlinear Proportional-integral Controller[J] Automatiea Vol 29,No 2,ppA99-505,1993
  • 10Alexandre Evsukoff Antonio C.S.Branco Structure identification and parameter optimization for non-linear fuzzy modeling[J] Fuzzy Sets and System 132(2002): 173-188

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部