摘要
以面积、能耗为优先准则,研究了GF(2m)域椭圆曲线密码(ECC)模运算VLSI的实现.选择GF(2163)上固定多项式基,引入了简单有效的快速模平方算法和改进的模逆算法,利用串行结构分别实现了模乘、模平方与模逆模块.基于UMC 0.25μm 1.8V工艺库的仿真结果表明,提出的串行模乘、快速组合逻辑模平方和快速模逆VLSI实现方式,通过牺牲域多项式灵活性,能够有效地减小面积、降低能耗,适合于资源受限的ECC系统.
We studies VLSI implementation of modular arithmetic of Elliptic Curve Cryptosystems (ECC) on finite field GF(2^m) in view of both area and energy. Choosing fixed polynomial base on GF(2163), a serial architecture to implement multiplication, square and inversion modular modules is proposed by presenting an efficient fast mould-square circuit and an improved modular-inversion algorithm. Experimental results based on simulation tools and UMC 0.25/an 1.8V library show that, we can effectively shrink area and decrease energy by utilizing the arithmetic and architecture we proposed at the cost of field polynomial flexibility. And this would be fit for resource-constrained ECC system.
出处
《微电子学与计算机》
CSCD
北大核心
2008年第12期80-83,87,共5页
Microelectronics & Computer