期刊文献+

极大布尔关联规则的挖掘算法 被引量:1

The Algorithm of Generating Maximal Boolean Association Rules
下载PDF
导出
摘要 关联规则的挖掘往往会产生大量的关联规则,"规则爆炸"的问题会使用户很难得到自己所需要的重要信息.极大布尔关联规则集因其包含的规则数量少且不丢失规则信息的优点提高了用户分析关联规则结果的效率,且节省了规则存储空间.在分析频繁闭项集、频繁基项集和极大布尔关联规则性质的基础上提出了一种挖掘极大布尔关联规则的算法,利用此算法可以得到极大布尔关联规则集,还通过实例验证了算法的正确性. A lot of association rules may be generated in the process of association rules mining, and the problem of the rules explosion may hardly let the user get the important information out of the association rules. The maximal Boolean association rule sets contain fewer association rules and don't lose the information of the rules, so this enables the user to improve the analysis of the result of the rules and save the memory of the rules. An algorithm is presented based on the analysis of the property of the frequent closed itemset, frequent key itemset and the maximal Boolean association rules. Through the algorithm the maximal Boolean association rule set is obtained. In addition, an example is used to prove its validation.
出处 《郑州大学学报(理学版)》 CAS 2008年第4期39-43,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省高校杰出科研人才创新工程项目 编号2007KYCX018
关键词 频繁闭项集 频繁基项集 极大布尔关联规则集 下集 frequent closed itemset frequent key itemset maximal Boolean association rule set downset
  • 相关文献

参考文献10

二级参考文献29

  • 1[1]Agrawal.R,Imielinski. T, Swami. A.Mining association rules between sets of items in large databases. In:Proceedinga of the ACM SIGMOD Conference on Management of Data[M]. Washington D. C,1993.207~216
  • 2[2]Agrawal. R, Srikant. R.Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on Very Large Databases[M]. Santiago, Chile,1994.478-499
  • 3[3]Pasquier. N,Bastide. Y,Taouil. R and Lakhal. L. Efficient mining of association rules using closed itemset lattices[J]. Information Systems 24(1): 1999,25- 46
  • 4[4]Srikant. R,Agrawal. R.Mining generalized association rules[J]. Future Generation Computer System ,1997,(13):161-180
  • 5[5]Yugami. N, Ohto. Y, Okamoto. S. Fast discovery of interesting rules.In:Proceeding of the 4th Pacific-Asia Conference[M].PAKDD2000, Japan,2000.17-27
  • 6[6]Chen. M.-S.,Han. J and Yu.P.S. Data mining:An overview from a datahase perspective[J].IEEE Transactions on Knowledge and Data Engineering, 1996,8(6):866-883
  • 7Jiuyong Li, Hong Shen, Rodney Topor. Mining the Smallest Association Rule Set for Predictions[A]. Proc of the 2001IEEE Int'1 Conf on Data Mining[C]. 2001. 361-368.
  • 8Doug Burdick, Manuel Calimlim, Johannes Gehrke. A Maximal Frequent Itemset Algorithm for Transactional Databases[A]. Proc of the 17th Int'l Conf on Data Engineering[C].443-452.
  • 9Mohammed J Zaki. Generating Non-Redundant Association Rules[A]. Proc of the 6th ACM SIGKDD Int' l Conf on Knowledge Discovery and Data Mining[C]. 2000. 34-43.
  • 10Li Li, Donghai Zhai, Fan Jin. A Graph-Based Algorithm for Frequent Closed Itemsets Mining[A]. Systems and Information Engineering Design Symp[C]. 2003. 19-24.

共引文献37

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部