期刊文献+

一种基于数据集市的产品设计知识处理方法 被引量:1

A method of product design knowledge processing based on data mart
下载PDF
导出
摘要 数据集市可为企业提供产品设计知识处理的廉价途径。因此,在建立数据集市的基础上,提出了一种产品设计知识处理方法,设计人员通过CBR系统输入查询请求,由OLAP通过钻取、切片等操作完成相似实例的匹配,通过知识约简技术对OLAP输出的相似实例及其属性进行简化。利用了粗集理论对属性进行重要性的判断和约简,为处理定量问题,给出了一种新的离散化方法,并利用相似学理论度量实例的相似性,以提高检索准确性和检索效率。最后,给出了一个的应用实例。 Data mart is a cheap method to give management analysis for product design knowledge processing. Building data mart of product design case for corporations, a knowledge processing method for product design was presented. Designers could input inquiries into Case-Based Reasoning (CBR) system. Then On-Line Analysis and Processing (OLAP) drilled down and found the similar case. Knowledge reduction techniques were adopted to reduce the retrieved similar cases output from OLAP, which improved CBR. Rough set theory was applied to calculate the important degree of each feature attribute and remove the redundant ones. And to deal with the quantitative features, a new discrete method was put forward, and the veracity and efficiency of case retrieval has been improved. The last an example was introduced.
出处 《制造业自动化》 北大核心 2008年第12期6-9,61,共5页 Manufacturing Automation
基金 南京人口管理干部学院重点科研项目基金(2007B04)
关键词 数据集市 知识管理 基于实例的推理 知识约简 data mart knowledge processing case-based reasoning knowledge reduction
  • 相关文献

参考文献7

  • 1倪益华,杨将新,顾新建,吴昭同.基于知识的CAx集成的系统框架研究[J].计算机集成制造系统-CIMS,2003,9(3):175-178. 被引量:15
  • 2Tim Chenoweth, David Schuff, Robert St Louis. A method for developing dimensional data marts [J]. Communications of the ACM, 2003, 46(12): 11-14.
  • 3周立美.相似工程学[M].北京:机械工业出版社.1998.
  • 4张光前,邓贵仕,李朝晖.基于事例推理的技术及其应用前景[J].计算机工程与应用,2002,38(20):52-55. 被引量:78
  • 5江力,何志均,孙守迂.一个面向产品变型设计过程的知识处理方法模型[J].计算机学报,1998,21(S1):369-374. 被引量:6
  • 6Huang C C, Tseng T L. Rough set approach to case-based reasoning application [J]. Expert System with Applications, 2004, 26 (3):369-385.
  • 7Dougherry J, Kohavir R, Saham M. Supervised and unsuper vised discretization of continuous feathers[A] Proceedings of the 12th International. Conference on Machine Learning[C]. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1995.194-202.

二级参考文献17

  • 1[1]Schank R,Abelson R R.Goals and Understanding [M].Erlbanum:Eksevier Science, 1977
  • 2[2]Kolodner J.Maintaining organization in a dynamic long-term memory [J].Cognitive Science, 1983 ;7(4) ,243~280
  • 3[3]Watson I,Marir F.Case-based reasoning:a review [J].The KnowledgeEngineering Review, 1994;9(4) :327~354
  • 4[4]Lan Watson. Applying Case-based Reasoning Technique for Enter prise Systems. University of Salford,U K Morgan Kaufmann Publishers Inc San Francisco,California
  • 5[5]David B Leake. Case-Based Reasoning-Experiences,Lessons,Future Directions[M].AAAI Press/MIT Press
  • 6[6]Barletta B.An Introduction to Case-Based Reasoning[J].AI Expert, 1991; (8) :43~49
  • 7[7]Oxman L.Workshop notes of AID'96 [C].In:Gero J Sed Proc Fourth International Conference on Artificial Intelligence in Design,Stanford University,USA:Academic Press, 1996
  • 8[8]Pu P.Introduction:Issues in Case-Based Design Systems[J].AI EDAM,1993;7(2) :79~85
  • 9[9]Kumar H S ,Krishnamrorthy C S.A Fraanework for Case-Based Rea soning in Engineering Design[J].AI EDAM, 1995; 9:161 ~ 182
  • 10[10]Kolodner J L.Improving Human Decision Making through CaseBased Decision Aiding [J].AI Magazine, 1991; 12(2) :52~68

共引文献97

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部