摘要
该文在分数阶傅里叶(FRFT)计算分解的基础上,讨论了其某些步骤在信号检测中的冗余,提出了一种简化的分数阶傅里叶算法(RFRFT),详细讨论了它的几种重要性质,并结合一次相位差分法提出了乘积性RFRFT(PRFRFT)算法,实现了mc-PPS的瞬时频率变化率(IFR)估计。同时借助角度变换提高了RFRFT识别参数的分辨率。该方法运算量小,易于实现。仿真结果证实了该方法能够有效地抑制噪声和交叉项,可以适应低信噪比环境。
This paper discusses some redundancy steps of FRFT in signal detection based on the decomposition of FRFT, and puts forward a Reduced FRFT (RFRFT) algorithm. Then it discusses several important characters of RFRFT in detail. Combined with the phase difference method, it proposes the product RFRFT arithmetic to realize the Instantaneous Frequency Rate (IFR) estimation of mc-PPS. And it enhances the parameter resolution rate of RFRFT by angle transform. This method is easy to calculate and implement. Simulation results validate the method is able to suppress the noise and cross-terms, and can apply to low SNR environment.
出处
《电子与信息学报》
EI
CSCD
北大核心
2008年第12期2881-2885,共5页
Journal of Electronics & Information Technology
基金
国家部委基金资助课题
关键词
多分量多项式相位信号
瞬时频率变化率
参数估计
分数阶傅里叶变换
简化算法
Multicomponent Polynomial Phase Signai(mc-PPS)
Instantaneous Frequency Rate(IFR)
Parameter estimation
FRactional Fourier Transform(FRFT)
Reduced arithmetic