期刊文献+

基于Mean-shift的粘连人体目标分割算法 被引量:2

Touched human object segmentation based on Mean-shift algorithm
下载PDF
导出
摘要 人体目标分割是人体目标视觉分析的关键问题之一。提出了一种基于Mean-shift的粘连人体目标分割算法。首先对视频图像进行预处理,从中分离出运动区域,根据人体外形的统计特征建立人体目标模板。在运动区域中均匀取若干个数据点作为种子点。从种子点出发,基于人体目标模板,应用Mean-shift算法不断迭代逼近模态点。对取得的模态点集合进行聚类,从而自动确定分类数,即运动区域中的人体目标数,并进行合理分割。基于PETS2006数据库的试验验证了该方法的可行性。 Human objects Segmentation is one of the key problems of Visual Analysis. In this paper, a novel touched human objects segmentation based on Mean-shift algorithm was proposed. At first, Video Images was preprocessed and motion regions were obtained, and model of human object was built according to statistical characteristics of body surface. Then, a few of points of motion region picked equably were taken as seeds, and local mode centroids were calculated by Mean-shift iterative process. At last, the number of categories was automatically acqured based on the clustering algorithm, and human objects were segmented according to the result of clustering. The experiment based on PETS 2006 Database proves this method is feasible.
出处 《计算机应用》 CSCD 北大核心 2009年第1期51-53,共3页 journal of Computer Applications
基金 深圳市科技计划项目(SZKJ0702) 广东省自然科学基金资助项目(7008732)
关键词 人体目标分割 MEAN-SHIFT 聚类分析 human object segmentation Mean-shift algorithm clustering algorithm
  • 相关文献

参考文献5

  • 1DO Y. Region based detection of occluded people for the tracking in video image sequences[ C]//Computer Analysis of Images and Patterns. Rocquencourt, France: Springer Press, 2005:829-836.
  • 2CHEN THOU-HO, HSU CHE-WEI. An automatic bi-direetional passing-people counting method based on color image processing [ C]//Intemational Camahan Conference on Security Technology. Taipei, Taiwan: Springer Press, 2003:200-207.
  • 3BATISTA J P. Tracking pedestrians under occlusion using multiple cameras[ C]//The International Conference on Image Analysis and Recognition. Porto, Portugal: Springer Press, 2004:552-562.
  • 4陈卓夷.基于非参数密度估计聚类的关键帧提取方法[J].计算机科学,2007,34(4):119-120. 被引量:8
  • 5宋新,罗军,王鲁平,沈振康.基于Mean Shift聚类的边缘检测方法[J].弹箭与制导学报,2007,27(1):366-368. 被引量:8

二级参考文献13

  • 1Zhu X Q,Wu X D,Fan J P,et al.Exploring video content structure for hierarchical summarization.Multimedia Systems,2004,10(2):98~115
  • 2Toklu C,Liou S P.Automatic keyframe selection for content-based video indexing and access.In:Proc.of SPIE.2000,3972:554~563
  • 3Grabmeier J,Rudolph A.Techniques of cluster algorithms in data mining.Data Mining and Knowledge Discovery,2002,6(4):303~360
  • 4Kim C,Hwang J N.An integrated scheme for object-bsed video abstraction.In:Proc.of the ACM Int.Conf.on Mutimedia.2000.303~311
  • 5Kin-Wai S,Kin-Man L,Guoping Q.A new key frame representation for video segment retrieval.IEEE Trans.On Circuits and Systems for VideoTechnology,2005,15(9):1148~1155
  • 6Comaniciu D,Meer P.Mean Shift:A robust approach toward feature space analysis.IEEE Trans.Pattern Anal.Mach.Intell,2002,24(5):603~619
  • 7Canny J.A computational approach to edge detection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1986,PAMI-8,(6):679-698.
  • 8D Marr and E.Hildrith.Theory of Edge Detection[M].Proc Royal Society of London,B207,1980.
  • 9G.Economou.Detecting edges using density value[J].Electronics Letters,2004,40 (24):53-54.
  • 10Yizong Cheng.Mean shift,mode seeking,and clustering[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1995,17 (8):790-799.

共引文献14

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部