期刊文献+

Theoretical Investigation of Exchange Bias in Compensated Cases 被引量:1

Theoretical Investigation of Exchange Bias in Compensated Cases
下载PDF
导出
摘要 The exchange bias (EB) of the ferromagnetic (FM)/antiferromagnetic (AFM) bilayers in a compensated case is studied by use of the many-body Green's function method of quantum statistical theory. The so-called compensated case is that there is no net magnetization on the AFM side of the interface. Our conclusion is that the EB in this case is primarily from the asymmetry of the interracial exchange coupling strengths between the FM and the two sublattices of the AFM. The effects of the layer thickness, temperature and the interracial coupling strength oi2 the exchange bias HE are investigated. The dependence of HE on the FM layer thickness and temperature is qualitatively in agreement with experimental results. HE is nearly inversely proportional to FM thickness. When temperature varies, both HE and He decrease with temperature increasing. The anisotropy of the FM layer only slightly influence He, but does not influence HE.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第11期1241-1244,共4页 理论物理通讯(英文版)
基金 supported by National Natural Science Foundation of China under Grant Nos.10574121,10874160,and 10025420 the‘111’Project of the Ministry of Education and the Chinese Academy of Sciences
关键词 exchange bias COERCIVITY compensated case Heisenberg Hamiltonian the many-body Green's function method 交换偏置 矫顽性 哈密尔顿函数 格林函数
  • 相关文献

参考文献13

  • 1W.P. Meiklejohn and C.P. Bean, Phys. Rev. 102 (1956) 1413.
  • 2J. Nogues and I.K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203.
  • 3H.Y. Wang and Z.H. Dai, Commun. Theor. Phys. (Beijing, China) 42 (2004) 141.
  • 4Z.J. Xiong, H.Y. Wang, and Z.J. Ding, Chin. Phys. 16 (2007) 2124.
  • 5P. Frobrich, P.J. Jensen, and P.J. Kuntz, Eur. Phys. J. B 13 (2000) 477.
  • 6A. Moschel and K.D. Usadel, Phys. Rev. B 49 (1994) 1268.
  • 7N.N. Bogolyubov and S.V. Tyablikov, Sov. Phys. Dokl. 4 (1959) 589.
  • 8H.Y. Wang, Y.S. Zhou, C.Y. Wang, and D.L. Lin, Chin. Phys. 11 (2002) 167.
  • 9Z.H. Zhai, J. Teng, B.H. Li, L.J. Wang, G.H. Yu, and F.W. Zhu, Aeta Phys. Sin. 55 (2006) 2064.
  • 10K. Takano, R.H. Kodama, A.E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Left. 79 (1997) 1130.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部