期刊文献+

基于径向基函数的多闸门控制河流的洪水模拟 被引量:8

Flood simulations using radial basis functions for complex river flows controlled by sluices
原文传递
导出
摘要 为了快速而准确地制定联合调度的复杂闸门水利枢纽处的洪水过程的防洪决策,开发了一种快速洪水模拟方法。以位于北京市北运河流域的北关分洪枢纽为例,采用二维水动力学模型计算了由上游来流量、闸门开度和相应下游水位等因素确定的800组工况;把模拟结果作为径向基函数神经网络的训练样本。这样,只用上游来流量、闸门开度、闸下水位就能快速地模拟出该区域的水位和流量。结果表明,模拟一组工况,用该方法只需不到1m in,而用二维模型需3h。 Complex river flows controlled by sluices were simulated to enable rapidly accurate flood defense decisions. A 2-D hydrodynamic model was used to simulate for 800 modes for the Beiguan diversion project in Beiyun River in Beijing considering several factors such as upper reach total inflow, each sluice opening height and water level downstream. The simulation results were used to train a radial basis function (RBF) neural network. The water levels and flow rates in the diversion can then he determined quickly using only the upper reach flow rate, each sluice opening height and each sluice water level down stream. Simulations of one mode take less than 1 rain using this method instead of almost 3 h by the 2-D model.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第12期2061-2064,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金杰出青年基金项目(50325929) 国家重点基础研究发展计划项目(2003CB415206)
关键词 洪水模拟 水动力学模型 径向基函数 实时 flood simulation hydrodynamic model radial basis function real-time
  • 相关文献

参考文献6

二级参考文献45

  • 1魏文礼,金忠青.复杂边界河道流速场的数值模拟[J].水利学报,1994,26(11):26-30. 被引量:10
  • 2姚建明,杨洁明.基于RBF神经网络的非线性系统智能控制[J].机械工程与自动化,2005(3):15-17. 被引量:6
  • 3尚金成,刘鑫卿,张勇传,刘育琪,杜江.基于多层神经元网络的随机自适应径流预报模型[J].水电能源科学,1995,13(1):52-56. 被引量:15
  • 4岑文辉,雷友坤,谢恒.应用人工神经网与遗传算法进行短期负荷预测[J].电力系统自动化,1997,21(3):29-32. 被引量:23
  • 5张恭肃 朱星明.洪水预报调度自动化系统[J].水文,1988,(5):1-6.
  • 6Yu Paoshan, Cehn Chiajung, Chen Shiannjong, Lin Shuchen. Application of grey model to ward runoff forecasting [ J ].Journal of The American Water Resources Association,2001,37( 1 ):151 - 166.
  • 7长办水文局汇编.水文预报论文选集[M].北京:水利电力出版社,1985..
  • 8Raman H, Sunikuma N. Multivariate modeling of water resources time series using ar6ficial neural networks [ J ].Hydrological Sciences Journal, 1995,40(2):145- 163.
  • 9Minns A W, Hall M J, Artificial neural networks as rainfall-runoff models[J]. Hydrological Science Journal, 1996,41 (3):399 - 417.
  • 10Bonaffe A, Galeati G, Sforna M. Neural networks for daily mean flow forecasting. In: Blain W R, Katsifarakis K Led. Water Resources and Distribution[ J ]. hydraulic Eng Software V, UK : Southamptom, 1994,1 : 131 - 138.

共引文献130

同被引文献74

引证文献8

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部