期刊文献+

基于粗糙集的蚁群算法不确定性分析 被引量:1

Uncertainty analysis of ant colony optimization algorithm based on rough sets
下载PDF
导出
摘要 蚁群算法中的信息素更新对整个算法的性能起到决定性的作用。在对蚁群算法进行系统仿真实验过程中,发现存在多种不确定因素影响信息素的更新。粗糙集是一种处理不确定和模糊知识的工具,本文利用粗糙集对试验结果进行了分析,给出了不确定因素之间的关系,并根据分析结果对信息素更新策略作了相应的改进,提高了算法的性能。 The pheromone updating is a deterministic factor in the performance of ant colony optimization algorithm (ACO). During the ACO system emulation experiment, many uncertain factors of pheromone updating are found. The rough sets approach is an important tool to deal with uncertain or vague knowledge. A lot of experimental results are analyzed and the relationships between uncertain factors are given. According to the results strategy of pheromone updating and performance of ACO are improved.
作者 王天擎
出处 《计算机工程与设计》 CSCD 北大核心 2008年第24期6337-6339,6343,共4页 Computer Engineering and Design
关键词 蚁群算法 信息素更新 仿真 不确定因素 粗糙集 ant colony optimization algorithm pheromone updating simulation uncertain factors rough sets
  • 相关文献

参考文献6

  • 1Dorigo M, Gianni Di Caro,Thomas Stutzle.Ant algorithms[J].Future Generation Computer System,2000,16:5-7.
  • 2赵宝江,李士勇,金俊.基于自适应路径选择和信息素更新的蚁群算法[J].计算机工程与应用,2007,43(3):12-15. 被引量:22
  • 3Coloni A,Dorigo M,Maniezzo V, et al.Ant system for job shop scheduling [J]. Belgian J of Operations Research Statistics and Computer Science,1994,34(1):39-53.
  • 4费蓉,崔杜武.中国邮递员问题的动态规划算法研究[J].计算机研究与发展,2005,42(2):294-299. 被引量:11
  • 5Dorigo M Luca,Maria Gamberdella.Ant colony for the traveling salesman problem[R].TR, IRIDIA, 1996.
  • 6Dorigo M,Di Caro G.The ant colony optimization meta-heuristic [C]. New Ideas in Optimization, McGraw-Hill, 1999: 11-32.

二级参考文献21

  • 1朱海梅,朱庆保,胡勇.具有自适应杂交特征的蚁群算法[J].计算机工程与应用,2004,40(22):81-83. 被引量:9
  • 2胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 3费蓉,崔杜武.不定期决策过程优化模型的算法研究[J].微电子学与计算机,2004,21(6):10-12. 被引量:1
  • 4《现代数学手册》编纂委员会.现代数学手册-计算机数学卷[M].武汉:华中科技大学出版社,2001.409-459.
  • 5《现代应用数学手册》编委会.现代应用数学手册-运筹学与最优化理论卷[M].北京:清华大学出版社,1997.254-266.
  • 6R.E. Bellman, S. E. Dreyfus. Applied Dynamic Programming. Princeton, New Jersey: Princeton University Press, 1962.
  • 7J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. London: The Macmillan Press LTD, 1976.
  • 8R.E. Bellman. Dynamic Programming. Princeton, New Jersey:Princeton University Press, 1957.
  • 9GoldbergDE. Genetic algorithms in optimization and machine learning. New York: Addison-Wesley, 1989.
  • 10C.H. Papadimition, K. Steiglitz. Combinatorial Optimization,Algorithms and Complexity. New Jersey: Printice-Hall, 1982.

共引文献31

同被引文献12

  • 1张扬,曲延滨.基于蚁群算法与神经网络的机械故障诊断方法[J].机床与液压,2007,35(7):241-244. 被引量:17
  • 2Colorni A,Dorigo M,Maniezzo V,et aI.Distributed optimization by ant colonies [A].Proceedings of ECALgl(European Conference on Artificial Life) [C].Paris,France: 1991:134- 142.
  • 3Bilchev G and Parmee I C.Searching heavily constrained design spaces[C].In Proc.of 22nd Int. Conf,Computer Aided Design 95. Yelta : Ukraine, 1995 : 230 - 235.
  • 4Marcin L P,Tony W.Using genetic algorithms to optimize ACS-TSP[C].Proc of 3rd lnt workshop ANTS.Brussels, 2002 : 282 - 287.
  • 5Zurada J M.Introduction to Artificial Neural System[M]. West Publishing Company, 1992.
  • 6Pawlak Z. Rough sets[J].International J of Computer and Information Sciences,1982,11(3):341-356.
  • 7Slimane-Kadi, M,Brasen,D.and Saucier G.A fast-FPGA prototyping system that uses inexpensive high-performance FPIC.Proc. 2rid Annual Workshop on FPGAs,Berkeley, 1994.. 147 - 156.
  • 8B. Scheuermann, K. So, M. Guntsch, M. Middendorf. FPGA implementation of population-based ant colony optimization [J].Applied Soft Computing, 2004,4:303 - 322.
  • 9汪怔江,张洪伟,雷彬.基于蚁群算法的神经网络在企业资信评估中的应用[J].计算机应用,2007,27(12):3142-3144. 被引量:5
  • 10金飞虎,郭琦.基于蚁群算法的Hopfield神经网络在多空间站路径规划的应用研究[J].计算机应用研究,2010,27(1):51-53. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部