摘要
根据组合导航的特点,设计了低成本磁航向系统神经网络补偿方法。研究了磁航向系统的误差和补偿技术;在全球定位系统信号良好情况下,以捷联惯导/全球定位组合导航系统的航向信息为参考,使用卡尔曼滤波作为学习算法,建立多层前向神经网络模型补偿磁航向系统。实验结果表明,神经网络补偿方法将磁航向系统的航向角误差由±15°减小到约±1°,取得了明显的效果。
According to the characters of integrated navigation, a neural network is designed to compensate the error of a low-cost magnetic heading system(MHS). The error sources of MHS are studied and the compensation methods are analyzed. When the Global Positioning System(GPS) is available, a multilayer feedforward neural network is designed to compensate MHS with the learning method of Kalman filter and the reference of strapdown inertial navigation system(SINS)/GPS integrated navigation result. Experiment results show that the neural network can make a significant effect and reduce the heading error of MHS from ± 15° to ±1°.
出处
《传感技术学报》
CAS
CSCD
北大核心
2008年第11期1848-1852,共5页
Chinese Journal of Sensors and Actuators
基金
兵器预研基金项目资助(2020203)
关键词
组合导航
磁航向系统
神经网络
卡尔曼滤波
integrated navigation
magnetic heading system
neural network
kalman filter