期刊文献+

Neumann边界条件下多孔介质中的一类Brinkman-Forchheimer双向扩散流关于重力系数的结构稳定性

Structural Stability on Gravity Coefficients for a Class of Brinkman Equations of Flow in Double Diffusive Convection Under Neumann Boundary Conditions
下载PDF
导出
摘要 研究Neumann边界条件下多孔介质中的一类Binkman-Forchheimer双向扩散流方程的结构稳定性,先求得了Binkman-Forchheimer方程的在L2范数下的先验界;然后,利用求得的先验界,研究了其解对重力参量的结构稳定性,即证明了其解对重力参量的连续依赖。 Structural stability for a class of Brink - Forchheimer equations of flow in double diffusive convection under Neumann boundary conditions is investigated i. e. the solution continuously depends on gravity coefficients is proved. A priori bounds in L^2 norm of the solution is obtbtained whereby we investigate structural stability.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2008年第5期423-427,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10471050)
关键词 结构稳定性 连续依赖 重力参量 Brinkman—Forchheimer方程 structural stability continuous dependence gravity coefficients Binkman - Forchheimer equations
  • 相关文献

参考文献7

  • 1Franchi F,Straughan B. Continuous Dependence and Decay for the Forchheimer Equations [ J ]. Proc Roy Soc Lon- don( A), 2003,459:3 195 - 3 202.
  • 2Straughan B, Hutter K. A Priori Bounds and Structural Stability for Double Diffusive Convection Incorporating the Soret effect[ J ]. Proc Roy Soc London ( A ) , 1999, 455 : 767 - 777.
  • 3Payne L, Song J C, Straugh B. Continuous Dependence and Convergence Results for Brinkman and Forchheimer Models with Variable Viscosity[ J ]. Proc Roy Soc London (A),1999, 455:2 173-2 190.
  • 4Payne L E, Straugh B. Structural Stability for the Darcy Equations of Flow in Porous Media[ J]. Proc R Soc London (A) ,1998,454:1 691 -1 698.
  • 5Chadam J, Qin Y. Nonlinear Convective Stability in a Porous Medium with Temperature Dependent Voiscosity and Initial drag [ J ]. Studies in Applied Mathematics, 1996, 96:273 - 288.
  • 6Bandle C. Isoperimetric Inequalities and Their Application [ M ]. London, Pitman Press, 1980.
  • 7Lin Changhao, Payne L E. Structural Stability for the Brinkman Equations of Flow in Double Diffusive Convention [ J ]. Math Anal Appl,2007,325 : 1 479 - 1 490.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部