期刊文献+

径向基函数法在地下水模拟中的应用 被引量:4

Application of RBF in simulation of groundwater flow
下载PDF
导出
摘要 一种真正的无网格法—径向基函数法应用于非均质多孔介质中的二维地下水流模型.介绍了基于经向基函数的配点法的基本原理.对水文地质参数按函数连续变化、渐变和突变3种非均质多孔介质中的二维地下水稳定流分别用径向基函数法和传统有限元法进行了计算.结果表明,该方法不需要背景网络,较有限元法计算简单,且计算效率高,节点配置较有限元法灵活,又有较高的精度. A truly meshfree method radial basis function collocation method is implemented for the 2-D groundwater flow model in heterogeneous porous media. The results showed the superior simplicity, general applicability and accuracy of this method, which is a very promising simulation tool in ground water study.
出处 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2008年第4期390-392,共3页 Journal of Liaoning Normal University:Natural Science Edition
关键词 径向基函数法 非均质 多孔介质 地下水数值模拟 RBF collocation method heterogeneous porous media groundwater flow numerical simulation
  • 相关文献

参考文献4

二级参考文献14

  • 1谢春红,赵文良,张天岭,丁家平.地下水不稳定渗流达西速度计算新方法[J].岩土工程学报,1996,18(1):68-74. 被引量:8
  • 2[1]Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of computational physics,1997,134:169-189.
  • 3[2]Hou T Y, Wu X H, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J].Math. Comput., 1999,68(227):913-943.
  • 4[3]Cruz M E, Petera A. A parallel Monte-Carlo finite-element procedure for the analysis of multicomponent random media [J]. Int. J. Numer. Methods Eng., 1995,38:1087-1121.
  • 5[4]Dykaar B B, Kitanidis P K. Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach:1.method [J]. Water Resources Research,1992,28(4):1155-1166.
  • 6[5]Durlofsky L J. Representation of grid block permeability in coarse scale models of randomly heterogeneous porous-media [J]. Water Resources Research,1992,28:1791-1800.
  • 7[6]McCarthy J F. Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media [J]. Transport in Porous Media, 1995,19:123-137.
  • 8[7]Babuska I, Szymczak W G. An error analysis for the finite element method applied to convection-diffusion problems [J]. Comput. Methods Appl. Math. Engrg., 1982,31:19-42.
  • 9[8]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods [J].SIAM J. Numer. Anal., 1983,20:510-536.
  • 10[9]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J. Numer. Anal., 1994,31:945-951.

共引文献68

同被引文献24

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部