摘要
作为各种非可换模糊逻辑代数的推广,引入剩余BCC-代数及强剩余BCC-代数的概念,研究了它们与psMTL-代数、pseudo-hoop等代数结构的关系。研究了剩余BCC-代数滤子的基本性质,建立了剩余BCC-代数的商代数理论;引入剩余BCC-代数的正规滤子概念,证明了强剩余BCC-代数的正规素滤子定理,从而拓广了相应逻辑代数滤子理论的已有结果。
As a generalization of various non-commutative fuzzy logic algebras, the notions of residual BCC-algebra and stronger residual BCC-algebra are introduced, and the relationships among them and psMTL-algebras and pseudo-hoops. By a filter of residual BCC-algebra, the congruence and quotient algebra are constructed. Moreover, the notion of normal filter in residual BCC-algebra is introduced, and the normal prime filter theorem of stronger residual BCC-algebra is proved.
出处
《华东理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第6期928-933,共6页
Journal of East China University of Science and Technology
基金
国家自然科学基金资助项目(60775038)
宁波大学王宽诚幸福基金资助项目
宁波大学研究生教育科研计划重大专项项目(YJ06G06)