期刊文献+

智能优化在铝合金低频电磁半连续铸造中的应用 被引量:1

Application of Intelligent Optimization in Low Frequency Electromagnetic Semi-continuous Casting for Al Alloy
下载PDF
导出
摘要 针对铝合金大尺寸扁锭成型裂纹倾向大、工艺参数不易找准的问题,建立了基于RBF的电磁半连续铸造神经网络模型,以铸锭裂纹量化值最小作为优化目标,以训练后的RBF网络作为评价函数,在工艺指标控制范围内,采用改进后的遗传算法对铝合金电磁半连续铸造过程的工艺参数进行了优化计算,获得了最优工艺参数值:铸造速度为52mm/min,铸造温度为724℃,扁锭宽面冷却强度为134L/min,扁锭窄面冷却强度为22L/min,电磁强度为11749A.匝,电磁频率为27Hz。按照该最优工艺参数值进行了真实试铸,结果表明,铸锭成品率比优化前提高了20%。 ANN(artificial neural network) model was established based on RBF(radial base function)and genetic algorithm to solve high crack tendency in large aluminum alloy ingot and un-rational technological parameters determination.The optimized design of technological parameters for aluminum alloy electromagnetic semi-continuous casting was conducted by means of modified genetic algorithm through taking minimum crack value as optimized end and taking trained RBF network as estimated function,and optimized technological parameters were presented.The experiment was performed based on the optimized technological parameters.The results indicate that the qualified rate of ingot is increased by 20%.
出处 《特种铸造及有色合金》 CAS CSCD 北大核心 2008年第12期959-962,共4页 Special Casting & Nonferrous Alloys
基金 国家重点基础研究发展计划(973计划)资助项目(2005CB623707)
关键词 铝合金 遗传算法 参数优化 电磁半连续铸造 Aluminum Alloy,Genetic Algorithm,Parameter Optimization,Semi-continuous Electromagnetic Casting
  • 相关文献

参考文献15

  • 1张勤,崔建忠,张北江.铝合金低频电磁铸造过程中裂纹的抑制[J].金属学报,2003,39(12):1259-1263. 被引量:9
  • 2SONG R G,ZHANG Q Z. Heat treatment technique optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm[J]. J. Mater. Processing Technology, 2001,117 : 84-88.
  • 3CONCEICAO C A, DOURADO N M. Metal-forming process optimization by inverse evolutionary search[J]. J. Mater. Process Technology,2002,121:403-413.
  • 4WEI Q, XIONG B Q , ZHANG Y A, et al. Production of high strength Al-Zn-Mg-Cu alloys by spray forming process[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2001,11:258-261.
  • 5施鸿均,杨弋涛,孙保良,邵光杰.铝合金连铸工艺参数的辅助优化[J].特种铸造及有色合金,2005,25(6):344-346. 被引量:9
  • 6CASTRO C F, ANTONIO C A C, SOUSA L C. Optimizationof shape and process parameters in metal forging using genetic algorithms[J]. J. Mater. Process Technology, 2004,146 : 356-364.
  • 7ZI B T,BA Q X,CUI J Z,et al. Study on axial changes of as-cast structures of Al-alloy sample treated by the novel SPMF technique [J]. Scriprnta Materialia, 2000,43 (4) : 377-380.
  • 8DAVID B FOGEL. An introduction to simulated evolutionary optimization[[J]. IEEE Transaction on Neural, 1994,79 : 191-200.
  • 9田津,李敏强,陈富赞.复杂样本分类的GA-RBFNN方法[J].系统工程学报,2006,21(2):163-170. 被引量:7
  • 10姜鹏飞,蔡之华.基于遗传算法和梯度下降的RBF神经网络组合训练方法[J].计算机应用,2007,27(2):366-368. 被引量:34

二级参考文献73

共引文献83

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部