期刊文献+

基于Galerkin法的旋转薄壁圆柱壳非线性行波振动的数值分析 被引量:4

NUMERICAL ANALYSIS OF NONLINEAR TRAVELLING WAVE VIBRATION OF ROTATING THIN CYLINDRICAL SHELLS BASED ON GALERKIN'S METHOD
下载PDF
导出
摘要 应用Donnell’s简化壳理论,在考虑阻尼和几何非线性的情况下,基于Galerkin方法,对旋转的薄壁悬臂圆柱壳在法向激振力作用下的非线性行波振动进行了数值分析。在研究过程中,首先,考虑阻尼并引入几何非线性项,建立薄壁圆柱壳的非线性波动方程,然后,采用Galerkin方法对波动方程进行转换,选取不同的模态组合,得到相应模态坐标下的非线性微分方程,最后用Runge?Kutta法进行数值计算并对圆柱壳的非线性波动振动特性进行了分析。结果表明,几何非线性使圆柱壳呈现明显的硬特性,其硬特性随激振力幅值的增大而得到加强,共振区存在多值性,多模态分析表明,轴向二阶模态对主模态影响较大,计算时宜采用两个轴向模态。 A numerical analysis was made to study the nonlinear travelling wave vibration of a cantilever rotating thin cylindrical shell under the action of a normal exciting force,taking damping and geometric nonlinearities into account,using Donnell's shallow shell theory and based on Galerkin's method.In the analysis,a nonlinear wave vibration equation of the thin cylindrical shell including damping and items due to geometric nonlinearities was established and then transformed by Galerkin's method.With different combinations of modes different nonlinear differential equations in modal coordinates were obtained.The Runge Kutta method was used to solve the equations numerically and some features of nonlinear wave vibration were discussed.The results show that geometric nonlinearities make the cylindrical shell display a hardening behavior and the behavior will be intensified with the increase of magnitude of exciting force.Multivalue phenomenon occurs in resonance regions.Multimode analysis shows that the axial mode of second order is of strong effect on the main mode and two axial modes should be considered in the computation.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第12期9-12,22,共5页 Journal of Vibration and Shock
基金 国家自然科学基金 上海宝钢集团公司联合资助(50574019)
关键词 行波振动 几何非线性 模态坐标 主模态 轴向模态 travelling wave vibration geometric nonlinearity mode coordinate main mode axial mode
  • 相关文献

参考文献11

  • 1Amabili M A. Comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach [J]. Journal of Sound and Vibration, 2003, 264 (5) : 1091-1125.
  • 2Lee Y S, Kim Y W. Nonlinear free vibration analysis of rotating hybrid cylindrical shells [ J]. Computers & Structures,1999, 70(2) :161-168.
  • 3Chen Y, Zhao H B, Shen Z P. Vibrations of high speed rotating shells with calculations for cylindrical shells [ J ]. Journal of Sound and Vibration, 1993, 160( 1 ) :137-160.
  • 4Pellicano F, Amabili M. Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads [ J ]. International Journal of Solids and Structures, 2003, 40( 13 ) :3229-3251.
  • 5李健,郭星辉,李永刚.薄壁圆柱壳旋转波动振动分析[J].东北大学学报(自然科学版),2007,28(4):553-556. 被引量:8
  • 6Lam K Y, Loy C T. Analysis of rotating laminated cylindrical shells by different thin shell theories [ J ]. Journal of Sound and Vibration, 1995, 186( 1 ): 23-35.
  • 7Honda Y, Matsuhisa H, Sato S. Modal response of a disk to a moving concentrated harmonic force [ J ]. Journal of Sound and Vibration, 1985, 102(4):457-472.
  • 8Amabili M, PeUicano F, Paigdoussis M P. Non-linear dynamics and stability of circular cylindrical shell containing flowing fluid, Part III: Truncation effect without flow and experiments [J]. Journal of Sound and Vibration, 2000, 237 (4) : 617-640.
  • 9Pellicano F, Amabili M. Effect of the geometry on the non- linear vibration of circular cylindrical shells [ J ]. Non-linear Mechanics, 2002, 37(7): 1181-1198.
  • 10Amabili M, Pellicano F, Paigdoussis M P. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, Part I: Stability [J]. Journal of Sound and Vibration, 1999, 225(4): 655-699.

二级参考文献9

  • 1Amabili M A.Comparison of shell theories for large-amplitude vibrations of circular cylindrical shells:Lagrangian approach[J].Journal of Sound and Vibration,2003,264(5):1091-1125.
  • 2Lee Y S,Kim Y W.Nonlinear free vibration analysis of rotating hybrid cylindrical shells[J].Computers & Structures,1999,70(2):161-168.
  • 3Chen Y,Zhao H B,Shen Z P.Vibrations of high speed rotating shells with calculations for cylindrical shells[J].Journal of Sound and Vibration,1993,160(1):137-160.
  • 4Pellicano F,Amabili M.Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads[J].International Journal of Solids and Structures,2003,40(13/14):3229-3251.
  • 5Honda Y,Matsuhisa H,Sato S.Modal response of a disk to a moving concentrated harmonic force[J].Journal of Sound and Vibration,1985,102(4):457-472.
  • 6Lam K Y,Loy C T.Analysis of rotating laminated cylindrical shells by different thin shell theories[J].Journal of Sound and Vibration,1995,186(1):23-35.
  • 7Fox C H J,Hardie D J W.Harmonic response of rotating cylindrical shell[J].Journal of Sound and Vibration,1985,101(4):495-510.
  • 8Yeh G C K.Forced vibration of a two-degree-of-freedom system with combined coulomb and viscous damping[J].Journal of Acoustical Society of America,1964,39(1):15-24.
  • 9郭星辉,许锷俊,李其汉,韩二中.盘形锥齿轮波动共振响应分析[J].东北工学院学报,1992,13(3):282-288. 被引量:9

共引文献7

同被引文献38

  • 1刘焕忠,李青,庄茁,S.Yamaguchi,M.Toyoda.发展附加质量模型应用于储液罐的动力分析[J].工程力学,2005,22(S1):161-171. 被引量:15
  • 2肖汉林,吴英友,朱显明,刘土光,张涛.轴向冲击下环向加筋复合材料圆柱壳的非线性动力响应[J].振动与冲击,2007,26(2):84-89. 被引量:1
  • 3万水 朱德懋.圆柱贮液器模态实验研究[J].弹道学报,1997,9(3).
  • 4Amabili M A.Comparison of shell theories for large-amplitude vibrations of circular cylindrical shells:Lagrangian approach[J].Journal of Sound and Vibration,2003,264(5):1091-1125.
  • 5Lee Y S,Kim Y W.Nonlinear free vibration analysis of rotating hybrid cylindrical shells[J].Computers & Structures,1999,70(2):161-168.
  • 6Chen Y,Zhao H B,Shen Z P.Vibrations of high speed rotating shells with calculations for cylindrical shells[J].Journal of Sound and Vibration,1993,160(1):137-160.
  • 7Pellicano F,Amabili M.Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads[J].International Journal of Solids and Structures,2003,40(13):3229-3251.
  • 8Lam K Y,Loy C T.Analysis of rotating laminated cylindrical shells by different thin shell theories[J].Journal of Sound and Vibration,1995,186(1):23-35.
  • 9Amabili M,Pellicano F,Paigdoussis M P.Non-linear dynamics and stability of circular cylindrical shell containing flowing fluid,Part Ⅲ:Truncation effect without flow and experiments[J].Journal of Sound and Vibration,2000,237(4):617-640.
  • 10Pellicano F,Amabili M.Effect of the geometry on the non-linear vibration of circular cylindrical shells[J].Non-linear Mechanics,2002,37(7):1181-1198.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部