期刊文献+

M带正交子波包理论 被引量:4

THEORY OF M-BAND WAVELET PACKETS
下载PDF
导出
摘要 M带正交子波基由于所具有的优良特性得到了广泛关注。2带子波包具有划分较高频率倍频程的能力,可用于改善子波对时间-频率局部化的性能,推广了信号的适用范围。本文用类似于从2带正交子波基扩展到2带子波包的概念,建立了M带子波包的的理论框架,并把有关2带子波包的定义、概念和性质推广到一般的M带子波包,给出了相应的证明。 In recent years, M-band orthonormal wavelet bases, due to their good characteristics, have attracted attention. The ability of 2-band wavelet packets to decompose high frequency channels can be employed to improve the properpty of wavelet for time-frequency localization, which makes more kinds of signals for analyzing by wavelet. Similar to the notations from the extention of 2-band wavelets to 2-band wavelet packets, the theory framework of M-band wavelet packets is developed, a generalization of the notations and properties of 2-band wavelet packets to that of M-band wavelet packets is made and the corresponding proofs are given.
出处 《电子科学学刊》 CSCD 1998年第1期1-6,共6页
基金 国家自然科学基金 国家教委跨世纪人才基金
关键词 带子波 子波包 信号处理 2-band wavelet, M-band wavelet, Wavelet packets
  • 相关文献

参考文献1

  • 1Zou H,Proc ICCSSP,1992年

同被引文献63

  • 1崔丽鸿,张新敬.M-带插值小波包[J].Journal of Mathematical Research and Exposition,2004,24(4):715-720. 被引量:1
  • 2陈清江,程正兴,杨守志.向量值正交小波包[J].应用数学,2005,18(4):505-511. 被引量:16
  • 3段虞荣,颜新祥,郑继明.运用多重分形和小波变换预测油气储量及确定勘探井位[J].高校应用数学学报(A辑),1997(1):99-106. 被引量:4
  • 4崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995..
  • 5秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1995..
  • 6扬福生.小波变换的工程分析与应用[M].北京:科学出版社,1999.
  • 7A Fasna, L Garibaldi. Application of the Wavelet Estimation Technique for the Analysis of a Motorway Bridge [ A ]. Proceedings of the Damas Conference [C]. Sheffield, U K, 1997. 355-367.
  • 8Morlet J Grossmana. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape[J]. Siam J Math Anal, 1984, 1 (5) :723-736.
  • 9Mallats. A Theory for Multi-resolution Signal Decomposition: The Wavelet Representation [ J ]. IEEE Trans on Pami, 1989, 1 1 (7) :674-693.
  • 10Mallats. Multi-frequency Channel Decompositions[J].IEEE Trans on Asap, 1989, 37(12): 2091-2110.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部