期刊文献+

网页关注度的一种计算算法研究 被引量:1

Study on algorithm for concern degree of Web pages
下载PDF
导出
摘要 提出了一种简单且高效的网页关注度计算算法。通过对网页关注度的计算,可以在网页展现时满足用户的信息检索需求。该算法针对不同用户的不同需求,可以让相同网页对不同用户体现出不同的关注度。对算法进行了详细描述,给出了算法的Java实现,并用实例对算法进行了验证,结果证明了算法的有效性。 This paper developed a kind of algorithm for analyzing information, which was used for computing concern degree of Web pages. By computing concern degrees of Web pages, it presented users' needs sufficiently. For different needs of different users, the algorithm could make the sane Web page present different concern degree. Then described detail of the algorithm, and gave an example and an implementation. A test is executed, and the result is well, which proves the validity of the algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2009年第1期132-133,136,共3页 Application Research of Computers
关键词 关注度 网页 算法 concern degree Web page algorithm
  • 相关文献

参考文献8

  • 1刘振岩,王万森,陈立平.WEB信息检索与WEB数据挖掘[J].微机发展,2003,13(7):66-68. 被引量:13
  • 2肖波.如何确定中文字符串的相似度[EB/OL].[2007-04-28].http://blog.csdn.net/eaglet/archive/2007/04/28/1588895.aspx.
  • 3COIRO J. Exploring the online reading comprehension strategies used by sixth-grade skilled readers to search for and locate information on the internet[J]. Reading Research Quarterly,2007,42(2) :214-257.
  • 4HEDDEN H. Creating an index for your Web site to make info easier to see[J]. Computers in Libraries, 2006,26(9) :16-18,20-21.
  • 5SCHATZ S. Improving performance support systems through information retrieval evaluation[ J]. Journal of Interactive Learning Research, 2006,37(4) :407-423.
  • 6BREEDING M. Analyzing Web server logs to improve a site' s usage [J]. Computers in Libraries,2005,25(9) :26,28-29.
  • 7GUNN H. With news search engines[ J ]. Teacher Librarian, 2005, 32(5) :52.
  • 8GOSPODNETIC O, HATCHER E. Lucene in action[ M ]. [ S. l. ] : Manning Publications Co, 2004.

二级参考文献5

共引文献12

同被引文献13

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2中国互联网络信息中心(CNNIC).第27次中国互联网络发展状况统计报告[R],北京:中国互联网络信息中心,2011,.
  • 3百度指数帮助[DB/OL].[2011-01-10].http://www.baidu.com/search/index_help.html.
  • 4Zhongming Ma, Gautam Pant,Olivia R Liu Sheng. Interest- based personalized search [ J ]. ACM Transactions on Information Systems (TOIS) ,2007,25 ( 1 ) : 1-38.
  • 5Gauch S, Speretta M, Chandramouli A, et al. User Profiles for Personalized Information Access [ C ]//The Adaptive Web: Methods and Strategics of Web Personalization, 2007 : 54-89.
  • 6Liu Jiahui Peter, Elin Dolan, Pedersen Ronby. Persona- lized News Recommendation Based on Click Behavior [ C ]//Proceedings of the 14th ACM International Conference on Intelligent User Interfaces,2010:31-40.
  • 7Su Xiaoyuan,Khoshgoftaar T M. A survey of collabo-rative filtering techniques [ J ]. Advances in Artificial Intelligence ,2009 ( 2009 ) : 1-19.
  • 8Xu Songhua, Zhu Yi, Jiang Hao, et al. A User-Oriented Webpage Ranking Algorithm Based on User Attention Time[ C]//Proceedings of the 23rd AAAI Conference on Artificial Intelligence,2008 : 1255-1260.
  • 9Li Xinghua, Wu Xindong, Hu Xuegang, et al. Keyword Extraction Based on Lexical Chains and Word Co- occurrence for Chinese News Web Pages [ C ]// Proceedings of IEEE International Conference on Data Mining 2008 Workshops, 2008 : 744-751.
  • 10Takano K, Xing Chen, Masuda K. A Feedb-ack Method of Improving the Performance of a Document Vector Space Developed on a Feature Extraction Model [ C ]// Proceedings of 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2007 : 263-267.

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部