期刊文献+

基于最大互信息最大相关熵的特征选择方法 被引量:18

Feature subset selection based on max mutual information and max correlation entropy
下载PDF
导出
摘要 特征选择算法主要分为filter和wrapper两大类,并已提出基于不同理论的算法模型,但依然存在算法处理能力不强、子集分类精度不高等问题。基于模糊粗糙集的信息熵模型提出最大互信息最大相关熵标准,并根据该标准设计了一种新的特征选择方法,能同时处理离散数据、连续数据和模糊数据等混合信息。经UCI数据集试验,表明该算法与其他算法相比,具有较高的精度,且稳定性较高,是有效的。 Feature selection algorithms broadly fall into two categories: the filter model and the wrapper model. A great many algorithms had been proposed, but the problems of weak process ability and low classification accuracy still exists. To solve these problems, this paper proposed a max mutual information and max correlation entropy criterion based on fuzzy rough information entropy model and designed a new feature selection algorithm based on this criterion. The algorithm can deal with dis- crete data, continuous data, fuzzy and hybrid data. According to tests on UCI datasets, the algorithm is effective, and has higher accuracy and stability compared to three other common feature selection algorithms.
出处 《计算机应用研究》 CSCD 北大核心 2009年第1期233-235,240,共4页 Application Research of Computers
关键词 模糊粗糙集 信息熵 特征选择 互信息 相关熵 fuzzy rough set information entropy feature selection mutual information correlation entropy
  • 相关文献

参考文献19

  • 1NARENDRA P M, FUKUNAGA K A. Brand and bound algorithm for feature subset selection [ J ]. IEEE Trans on Computer, 1977,26 (9) : 917-922.
  • 2ALMUALLIM H, DIETTERICH T G. Learning with many irrelevant features[ C ]//Proc of the 9th Nat' l Conf Artificial Intelligence.1991:547-552.
  • 3KIRA K, RENDELL L A. The feature selection problem:traditional methods and a new algorithm[ C]//Proc of the 10th Nat'l Conf Artificial Intelligence. 1992.: 129-134.
  • 4LIU Huan, SETIONO R. A probabilistic approach to feature selection: a filter solution [ C ]//Proc of the 13th International Conf Machine Learning. 1996:319-327.
  • 5HALL M A. Correlation-based feature selection for discrete and numeric class machine learning [ C ]//Proc of the 17th International Conf Machine Learning. 2000:359-366.
  • 6PAWLAK Z. Rough sets:theoretical aspects of reasoning about data [ M ]. Boston : Kluwer Academic Publishers, 1991.
  • 7JENSEN R, SHEN Qiang. Fuzzy-rough attribute reduction with application to Web categorization [ J ]. Fuzzy Sets and Systems, 2004, 141 (3) :469-485.
  • 8JENSEN R, SHEN Q. Fuzzy-rough sets assisted attribute reduction [J]. IEEE Trans on Fuzzy Systems,2007,15( 1 ) :73-89.
  • 9BHATT R B, GOPAL M. On fuzzy-rough sets approach to feature selection[J]. Pattern Recognition Letters,2005,26(7):965-975.
  • 10HU Qing-hua, YU Da-ren, XIE Zong-xia. Information-preserving hybrid data reduction based on fuzzy-rough techniques [ J]. Pattern Recognition Letters,2006,27(5 ) :414-423.

同被引文献214

引证文献18

二级引证文献308

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部