期刊文献+

高表面能固体的润湿性实验及表面张力计算 被引量:20

Wettability of High Surface Energy Solid and its Surface Tension Calculation
下载PDF
导出
摘要 采用座滴法在1100℃及氩气与CO混合气氛的环境中,研究了Au、Ag、Cu、Ge、Sn五种金属在Al2O3、SiO2、ZrO2、高定向热解石墨的(0001)基面四种固体表面上的润湿性,用ADSA滴形分析软件测量了接触角。通过新的理论方程分别计算了四种固体材料的表面张力。结果表明,在同一种陶瓷表面上,接触角随着金属液体表面张力的增加而增大,所计算的固体表面张力数值具有较好的一致性,表明所建立的理论公式能够正确反映液、固、气三相之间的张力平衡关系。在1100℃时,上述四种固体材料表面张力的平均值分别为340.24、457.79、357.52、431.35(mJ.m-2)。 The wetting of Au, Ag, Cu, Ge and Sn on the Al2O3, SiO2, ZrO2 and (0001) basal plane of highly oriented pyrolytic graphite (HOPG) was investigated by sessile drop method under argon mixture CO atmosphere at 1100℃. The contact angles were measured by ADSA software. The surface tensions of four substrates were calculated by new theoretical equation. The results show that the contact angles on the same ceramic surface increase with an increase of liquid metal surface tensions, the solid surface tension calculated with the new theoretical equation is well consistent, which indicates that the establishing theoretical formula can correctly reflect the equilibrium relation of tension among liquid, solid and vapor phases. The average values of surface tension of four substrates mentioned above are 340.24, 457.79, 357.52, 431.35(mJ·m^-2 ) respectively at 1100℃.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2008年第6期932-936,共5页 Journal of Materials Science and Engineering
基金 国家自然科学基金资助项目(50471007) 福建省自然科学基金资助项目(E0710006)
关键词 高表面能固体 表面张力 座滴法 接触角 润湿性 high surface energy solid surface tension sessile drop method contact angle wettability
  • 相关文献

参考文献14

  • 1陈传煊.表面物理化学[M].北京:科学技术文献出版社,1995.12-83.
  • 2罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展[J].科学技术与工程,2007,7(19):4997-5004. 被引量:51
  • 3Garner WE.[J]. J ChemSoc, 1947, 1239-1244.
  • 4汤伟,朱定一,陈丽娟,关翔锋.基于分子动力学结合神经网络的Au表面能计算方法[J].中国有色金属学报,2005,15(1):105-109. 被引量:2
  • 5朱定一,戴品强,罗晓斌,张远超.润湿性表征体系及液固界面张力计算的新方法(Ⅰ)[J].科学技术与工程,2007,7(13):3057-3062. 被引量:69
  • 6Stalder A F, Kulik G, Sage D, et al. A snake-based approach to accurate determination of both contact points and contact angles [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2006, 286(1-3):92-103.
  • 7Rhee S K.[J]. J Am Ceram Soc, 1972, 55(6) :300-303.
  • 8许并社.材料界面的物理化学[M].北京:化学工业出版社,2006,107-116.
  • 9Mcnally R N, Yeh H C, et al. [J]. Journal of Materials Science, 1968, 3(2) : 136-138.
  • 10Lee J, Nakamoto M, Tanaka T. Thermodynamic study on the melting of nanometer-sized goid particles on graphite substrate [J]. Journal of materials science, 2005, 40(9-10) : 2167-171.

二级参考文献63

  • 1[4]Tavana H,Neumann A W.Adv Colloid Interface Sci,2007; doi:10.10116/j.cis.2006.11.024
  • 2[5]Pocius A V.Adhesion and adhesion technology:An introduction.New York:Marcel Dekker,2002:73-102
  • 3[6]Kwok D Y,Neumann A W.Colloides Surf,A:Physicochemical and engineering Aspects,2000;161(1):31-48
  • 4[7]Sharma P K,Hanumantha R K.Adv colloid interface Sci,2002; 98(1):341-463
  • 5[8]Zisman A W,Contact angle,wettability and adhesion.In:Advances in Chemistry Series,vol.43,American Chemical Society,Washington,DC,1964
  • 6[9]Fox H W,Zisman A W.J Colloid Interface Sci,1952;7(1):109-121
  • 7[10]Jiang Hong,Chin Kedong,Wu huili.J Dong Hua University(Eng.Ed.),2001; 18(1):38-44
  • 8[14]Dann J R,J Colloid Interface Sci,1970;32(2):302-320
  • 9[15]Volpe D C,Maniglio D,Brugnara M,et al.J Colloid Interface Sci,2004;271 (2):434-453
  • 10[16]Duncan D,Li D,Gaydos J,et al.J colloid interface Sci,1995;169(1):256-261

共引文献116

同被引文献212

引证文献20

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部