摘要
The area of the southwestern Nansha Trough is one of the most productive areas of the southern South China Sea.It is a typical semi-deep sea area of transition from shoal to abyssal zone.To understand distributions and roles of nitrogen forms involved in biogeochemical cycling in this area,contents of nitrogen in four extractable forms:nitrogen in ion exchangeable form(IEF-N),nitrogen in weak acid extractable form(WAEF-N),nitrogen in strong alkali extractable form(SAEF-N) and nitrogen in strong oxidation extractable form(SOEF-N),as well as in total nitrogen content(TN) in surface sediments were determined from samples collected from the cruise in April-May 1999.The study area was divided into three regions(A,B and C) in terms of clay sediment(<4 μm) content at <40%,40%-60% and >60%,respectively.Generally,region C was the richest in the nitrogen of all forms and region A the poorest,indicating that the finer the grain size is,the richer the contents of various nitrogen are.The burial efficiency of total nitrogen in surface sediments was 28.79%,indicating that more than 70% of nitrogen had been released and participated in biogeochemical recycling through sediment-water interface.
The area of the southwestern Nansha Trough is one of the most productive areas of the southern South China Sea. It is a typical semi-deep sea area of transition from shoal to abyssal zone. To understand distributions and roles of nitrogen forms involved in biogeochemical cycling in this area, contents of nitrogen in four extractable forms: nitrogen in ion exchangeable form (IEF-N), nitrogen in weak acid extractable form (WAEF-N), nitrogen in strong alkali extractable form (SAEF-N) and nitrogen in strong oxidation extractable form (SOEF-N), as well as in total nitrogen content (TN) in surface sediments were determined from samples collected from the cruise in April - May 1999. The study area was divided into three regions (A, B and C) in terms of clay sediment (〈4 μm) content at 〈40%, 40%-60% and 〉60%, respectively. Generally, region C was the richest in the nitrogen of all forms and region A the poorest, indicating that the finer the grain size is, the richer the contents of various nitrogen are. The burial efficiency of total nitrogen in surface sediments was 28.79%, indicating that more than 70% of nitrogen had been released and participated in biogeochemical recycling through sediment-water interface.
基金
Supported by the National Basic Research Program of China (973 Program, No. 2007CB407305)
Qingdao Special Project for Outstanding Scientists (No.05-2-JC-90)
the 100 Talents Project of Chinese Academy of Sciences (No.2003-202)