摘要
自然单元法是一种基于Voronoi图及Delaunay三角形剖分图,以自然邻接点插值为试函数的一种无网格数值方法。基于自然单元法中自然邻接点的Laplace插值形函数,求出了其一阶及二阶导函数,建立了Winkler地基上正交各向异性Kirchhoff弹性薄板的自然单元法求解控制方程,并进行了相应的程序实现,最后通过算例分析表明了该方法的可行性和有效性。
The natural element method (NEM} is a new numerical computational method based on Voronoi diagram and Delaunay triangulation. It is a Galerkin--based meshless method that is built on the natural neighbor interpolation shape function. In this paper, the 1^st and 2^nd derivatives of Laplace natural neighbor interpolation function in NEM are deduced and the governing equations of natural element method to the deflection solution of bending orthotropic Kirchhoff elastic thin plate are achieved. Numerical results indicate that the above theory and the corresponding programs are effective and accurate.
出处
《地下空间与工程学报》
CSCD
2008年第6期1081-1085,共5页
Chinese Journal of Underground Space and Engineering
基金
交通部西部交通建设科技项目(编号:2002-318-000-26)