期刊文献+

小波包分析及高斯混合模型在汽轮机振动故障诊断中的应用 被引量:5

Application of wavelet packet analysis and Gaussian Mixture Model in turbine vibration faults diagnosis
下载PDF
导出
摘要 提出一种利用高斯混合模型对汽轮机振动故障进行诊断的方法。原始的汽轮机振动故障信号用小波包进行分解重构滤波,提取振动信号特征量,然后用特征量来建立高斯混合模型。用每种故障状态的几组数据作训练数据,对每种故障状态建立一个识别元,识别元的参数用EM算法求解最大似然估计,最终将待识别故障数据输入每个识别元,找到最大概率的识别元所对应的故障即为诊断的最后结果。 A turbine vibration fauhs diagnosis method by using Gaussian Mixture Models was proposed. The original turbine vibration faults signal is decomposed and reconstructed by wavelet packet analysis method, which act as a filter. Then the character of the vibration signal is picked up and used to set up the GMM. For each fault situation, taking its several set of the fault data as training data, an identifying cell for this fault situation is created. The maximum likelihood estimation of parameter of identifying cell is solved with EM algorithm. At last, the unidentified data is input to every identifying cell, and the maximum probability cell is found out, and the fault of this cell is the last diagnosis result.
作者 罗绵辉 梁啸
出处 《华电技术》 CAS 2008年第12期21-23,共3页 HUADIAN TECHNOLOGY
关键词 高斯混合模型(GMM) 故障诊断 小波包分析 EM算法 Gaussian Mixture Model (GMM) faults diagnosis wavelet packet analysis EM algorithm
  • 相关文献

参考文献7

二级参考文献45

  • 1彭玉华.小波变换与工程应用[M].北京:科学出版社,2000..
  • 2[1]Douglas A Reynolds, Richard C Rose.Robust text-independent speaker identification using Gaussian mixture speaker models[J]. IEEE Trans. on Speech and Audio Processing,1995,3(1):77-83.
  • 3[2]K Fukunaga.Introduction to statistic pattern recognition[M].New York: Academic Press, 1990.
  • 4[3]A P Dempster, N M Laird D B Rubin.Maximum likelihood from incomplete data via the EM algorithm[J]. J Roy Statist Soc. 1977,B 39:1-38.
  • 5[4]Kuo-Hwei You, Hsiao-Chuan Wang. Joint estimation of feature transformation parameters and Gaussian mixture model form speaker identification[J]. Speech Communication, 1999,28:227-241.
  • 6章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 7JAIN A K, MURTY M N, FLYNN P J. Data clustering:Review [J]. ACM Computing Surveys (CSUR), 1999,31(3) : 264 -323.
  • 8HAN J W, KAMBER M. Data Mining: Concepts and Techniques[M]. San Francisco: Morgan Kaufmann, 2001.
  • 9ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH:An efficient data clustering method for very large databases [A]. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data [C]. New York: ACM Press, 1996. 103- 114.
  • 10GUHA S, RASTOGI R, SHIM K. CURE: An efficient data. clustering method for very large databases [J].ACM SIGMOD Record, 1998, 27(2) : 73 -84.

共引文献38

同被引文献44

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部