期刊文献+

Cu掺杂ZnS的第一性原理计算 被引量:6

First-principles Calculation of Cu-doped ZnS
下载PDF
导出
摘要 采用第一性原理的平面波赝势方法和广义梯度近似,研究了闪锌矿ZnS掺杂Cu前后的电子结构和光学性质。通过对掺杂前后电子能带结构,态密度以及分态密度的计算和比较,发现引入杂质Cu后,在价带顶Cu3d态与S3p态发生p-d排斥,造成价带顶向高能端移动;在导带底Zn4s与Cu3p相互重叠,发生杂化,引起导带向低能端偏移,两方面的作用使得ZnS的带隙变小。掺Cu后ZnS的光吸收向低能端扩展,并且在可见光区生成新的吸收峰。 The electronic structure and optical properties of pure and Cu-doped sphalerite ZnS were studied by using first-principles plane wave pseudopotential method with the generalized gradient approximation. Analysis of the band structure, state density and partial state density of Cu doped ZnS showed that on top of valence band, p-d rejection effect between Cu3d state and S3p state occurred, which makes top of valence band move to higher energy side; on bottom of conduction band, Zn4S and Cu3p states overlap each other ,which causes hybrid. It makes conduction band excursion to lower energy side. Both of the effects result in the band gap narrowing. The optical absorption extends to lower energy side and generates a new peak of optical absorption in the visible light region after Cu doped ZnS.
出处 《安徽理工大学学报(自然科学版)》 CAS 2008年第4期85-88,共4页 Journal of Anhui University of Science and Technology:Natural Science
基金 安徽省绿色材料化学重点实验室科学研究基金资助项目(KLSF(I)03)
关键词 密度泛函理论 电子结构 Cu掺杂ZnS density functional theory electronic structure Cu-doped ZnS
  • 相关文献

参考文献12

  • 1G BEVILACQUA,L MARTINELLI. Jahn-teller effect and the luminescence spectra of V2+in ZnS and ZnSe[J]. Phys Rev B,2002,66:1 553 381-1 553 385.
  • 2K MANZOOR, V Aditya. Enhanced eleetrolumin-eseence properties of doped ZnS nanorods formed by the self-assembly of colloidal nanocrystals [J]. Solid State Communications, 2005,135 : 16-20.
  • 3ZAKHAROV O,RUBIO A,BLASE X, et al. Quasiparticle rand structures of six I -- VI compounds: ZnS, ZnSe, ZnTe, CdS,CdSe, and CdTe [J ]. Phys Rev B,1994,50,10 780-10 787.
  • 4胡永金,崔磊,赵江,滕玉永,曾祥华,谭明秋.高压下ZnS的电子结构和性质[J].物理学报,2007,56(7):4079-4084. 被引量:11
  • 5何开华,余飞,姬广富,颜其礼,郑澍奎.第一性原理研究ZnS掺V的光学性质和电子结构[J].高压物理学报,2006,20(1):56-60. 被引量:20
  • 6YOJI IMAI, AKIO WATANABE. Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method[J]. Journal of Materials Science: Materials in Electronics,2003,14:149-156.
  • 7MD SEGALL, PJD LINDAN,MJ PROBERT, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. J Phys Cond Matter, 2002, 14:2 717-2 744.
  • 8V MILMAN, M C WARREN. Elasticity of hexagonal BeO[J]. J. Phys Condens. Matter. 2001,13:241- 251.
  • 9VOGEl. D,KRUGER P,POLLMANN J. Ab initio electronic-structure calculations for II--VI semiconductors using self-interaction-corrected pseudopotentials [J]. Phys Rev B,1995,52:1 4316-1 4319.
  • 10WEI S H,ZUNGER A. Calculated natural band offsets of all II-VI and III-V semiconductors: Chemical trends and the role of cation d orbitals[J]. Appl. Phys. Lett. 1998,72:2 011-2 015.

二级参考文献27

  • 1班大雁,张海峰,李永平,方容川.ZnS(111)表面电子结构研究[J].物理学报,1996,45(9):1526-1535. 被引量:3
  • 2Bevilacqua G,Martinell L,Vogel E E.Jahn-Teller Effect and the Luminescence Spectra of V2+ in ZnS and ZnSe[J].Phys Rev B,2002,66:1553381-1553385.
  • 3Fazzio M,Caldas J,Zunger A.Many-Electron Multiplet Effects in the Spectra of 3d Impurities in Heteropolar Semiconductors[J].Phys Rev B,1984,30:3430-3455.
  • 4Biernacki S W,Roussos G,Schulz H J.The Luminescence of V^2+(d^3) and V^3+(d^2) Ions in ZnS and an Advanced Interpretation of Their Excitation Levels[J].J Phys C(Solid State Phys),1988,21:5615-5630.
  • 5Zakharov O,Rubio A,Blasé X,et al.Quasiparticle Band Structures of Six Ⅱ-Ⅵ Compounds:ZnS,ZnSe,ZnTe,CdS,CdSe,and CdTe[J].Phys Rev B,1994,50:10780-10787.
  • 6Wang Y R,Duke C B.Atomic and Electronic Structure of ZnS Cleavage Surfaces[J].Phys Rev B,1987,36:2763-2769.
  • 7Jin G R,Liu W M.Collapse and Revivals of Exciton Emission in a Semiconductor Microcavity:Detuning and Phase-Space Filling Effects[J].Phys Rev B,2004,70:0138031-0138036.
  • 8Watanabe S,Kamimura H.First-Principles Calculations of Multiplet Structures of Transition Metal Deep Impurities in Ⅱ-Ⅵ and Ⅲ-ⅤSemiconductors[J].Mater Sci Eng B,1989,3:313-324.
  • 9Perdew J P,Burke K,Ernzerhof M.Generalized Gradient Approximation Made Simple[J].Phys Rev Lett,1996,77:3865-3868.
  • 10Milman V,Warren M C.Elasticity of Hexagonal BeO[J].J Phys Condens Matter,2001,13:241-251.

共引文献26

同被引文献61

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部