期刊文献+

用组合算法逐步提高电阻层析成像的分辨率 被引量:1

Progressive enhancing the resolution of electrical resistance tomographic image using combinatorial inversion algorithm
下载PDF
导出
摘要 电阻层析测量中的软场效应和反演算法中的不适定性,常使作为测量结果的两相流层析图在相界面处呈模糊状态,给分析带来困难。采用迭代的定量性优化算法(如改进牛顿-拉夫逊类MNR算法),其图像分辨率虽较非迭代简单反演算法(如线性反投影LBP算法、灵敏度算法)的结果有改进,但当流型稍微复杂一点尤其当界面纵横交错时,迭代误差可能在某一个局部最优的水平上停留。如直接采用能全局寻优的基于遗传原理的反演算法,因其实际收敛性受到个体解结构中基因数量限制,层析图像的分辨力也受到限制。根据这个问题,本文采用LBP-MNR-GA组合算法层析成像的方法,应用组合算法中各相关算法的各自优点,逐步提取来自测量数据中的信息量,在提高层析图像分辨率上取得了较好的结果。 The existence of soft field effect and ill-poseness in electrical resistance tomographic measurement often causes a blurring tomogram, which makes the analysis of two-phase flow a difficult task. Using iteration based sophisticated quantitative algorithm (such as the modified Newton Raphson method) could yield a better image resolution compared with that obtained from a simpler qualitative based algorithm ( such as the linear back projection method, or the sensitivity method). The iteration might still be trapped in a local optimum point when the flow regime goes complex due to random and criss-crossed interface. Direct employing so-called global optimized generic algorithm is practically restrained by the size of genes allowable in an individual GA solution, leading to a very limited image resolution. To address this problem, an LBP-MNR-GA based combinational inversion algorithm is adopted in this paper to extract the information from the measurement data for a two-phase flow in a separate and progressive manner, which yields a better image resolution.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2587-2593,共7页 Chinese Journal of Scientific Instrument
基金 中国石油大学211建设基金(211SZ-05)资助项目
关键词 电阻抗层析测量 组合反演算法 图像分辨率与评价 electrical resistance tomography combinatorial inversion algorithm image resolution and evaluation
  • 相关文献

参考文献17

  • 1WILLIAMS R A , BECK M S. Process tomography:Principles techniques and applications [ M ]. ButterworthHeinemann Ltd, Oxford: 1995.
  • 2DICKIN F, WANG M. Electrical resistance tomography for process applications[J ]. Meas. Sci and Technol, 1996,7 ( 3 ) : 247-260.
  • 3董峰,刘小平,邓湘,徐苓安.电阻层析成象技术在两相管流测量中的应用[J].化工自动化及仪表,2001,28(6):50-54. 被引量:10
  • 4XIE C G, HUANG S M. Electrical capacitance tomography for flow imaging:system model for development of imaging reconstruction algorithms and design of primary sensors [ J ]. IEE Proceedings-G, 1992,139 ( 1 ) :89-98.
  • 5BARBER D C, BROWN B H. Applied potential tomography [ J ]. J. Phys. E: Sci. instrum, 1984 (17) : 723-733.
  • 6赵进创,傅文利,胡强,张锦雄.电容层析成像系统重建图像质量评价方法探讨[J].广西大学学报(自然科学版),2003,28(1):61-64. 被引量:5
  • 7GESELOWITH D B. An application of electrocardiograph lead theory to impedance plethysmography [ J ]. IEEE Trans on Biomedical Eng, 1971,18( 1 ) :38-41.
  • 8KOTRE C J, EIT image reconstruction using sensitivity weighted filtered baekprojection[J]. Phys. Meas. 1994, A15:125-136.
  • 9魏颖,于海斌,王师.正则化广义逆ERT图像重建算法的研究[J].控制与决策,2003,18(4):500-503. 被引量:9
  • 10ADLER A, GUARDO R. A neural network image reconstruction technique for electrical impedance tomography [J]. IEEE Trans on Med Imag, 1994,13:594-600.

二级参考文献58

  • 1马艺馨,徐苓安,姜常珍,邵嘉庆.电阻层析成像技术的研究[J].仪器仪表学报,2001,22(2):195-198. 被引量:24
  • 2马艺馨 王浩 姜常珍 等.电阻层析成像技术应用于两相流检测的仿真研究[A]..多相流检测技术进展[C].北京:石油工业出版社,1996.57—64.
  • 3Dickin F J, Wang M. Electrical resistance tomography for process applicadon[J]. Meas Sci Tech, 1996, 7(3),247-260.
  • 4Tadakuni Mural, Yukio Kagawa. Electrical impedance computed tomography based on a finite element model[J]. IEEE Trans Biom Eng,1985,32(3):177-184.
  • 5Thomas J Y, John G W, Willis J T. Comparing reconstruction algorithms for electrical impedance tomography[J]. IEEE Trans Biom Eng , 1987,34(11):843-852.
  • 6VAUHKONEN M, VADASZ D, KARJALAINEN PA, et al. Tikhonov regularization and prior inf-ormation in electrical impedance tomography [J]. IEEE Trans on medicai imaging,1998,17(2):285-293.
  • 7WANG M. Inverse solutions for electrical impedance tomography based on conjugate gradients methods [J].Meas Sci Technol, 2002, 13: 101--117.
  • 8TADAKUNI M YUKIO K. Electrical impedancecomputed tomography based on a Finite Element Model[J]. IEEE Trans on BME, 1985, BME-32 (3) : 177 --184.
  • 9KOTRE C J. A sensitivity coefficient method for the reconstruction of electrical impedance tomography [J].Clin Phys Physiol Meas, 1989, 10(3): 275--281.
  • 10KIRSCH A. An introduction to the mathematical theory of inverse problems [M]. New York: Springer-Verlag,1996.

共引文献86

同被引文献12

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部