期刊文献+

奇异性分析方法在地震资料解释及反演研究中的应用 被引量:2

Applications of singularity analysis to seismic data interpretation and inversion research
下载PDF
导出
摘要 本文引入启动函数拓展传统的地层转换模型,在该模型中利用奇异性信息量化地层速度的突变特征,并基于传统的褶积模型研究奇异性信息在波阻抗到合成地震记录之间的传递性。研究结果表明,地震记录中较好地保留了地层介质的奇异性特征,因而从地震记录中提取的奇异性信息除了可以帮助进行地震解释外,还可以作为介质波阻抗反演的有力的支持工具. In this paper, we introduce the onset function to generalize the traditional geologic boundaries variations model which uses, singularity information to represent the abruptness of the lithologic velocity transition. We study the singularity information passage from acoustic impedance to seismogram based on the convolution seismic-model theory. Our results indicate that stratum singularity information is preserved well by seismic data, so it is a powerful tool for delineating stratigraphy boundaries and inversing acoustic impedance based on singularity analysis of seismic data.
出处 《地球物理学进展》 CSCD 北大核心 2008年第6期1678-1684,共7页 Progress in Geophysics
基金 中国科学院知识创新工程重要方向项目(KZCXZ-YW-203)资助
关键词 奇异性 传递 地震数据解释 波阻抗反演 singularity,passage,seismic data interpretation,acoustic impedance inversion
  • 相关文献

参考文献36

  • 1李春峰.分形介质与分形地层[J].地层学杂志,2005,29(4):348-354. 被引量:6
  • 2常旭,刘伊克.Hausdorff分数维识别地震道初至走时[J].地球物理学报,1998,41(6):826-832. 被引量:41
  • 3Chang X, Liu Y K. Ashida Yuzuru. Hausdorff fractal algorithm for picking first break in seismic traces[J]. BUTSURITANSA. 1999, 52(4): 316-322.
  • 4汪富泉,李后强.小波理论与分形[J].物理,1994,23(9):539-543. 被引量:31
  • 5Payton C, Ed. Seismic stratigraphy - applications to hydrocarbon exploration AAPG, 1977.
  • 6Verhelst F. Integration of seismic data with well-log data: Ph. D. thesis, Delft University of Technology, 2000.
  • 7Muller J, Bokn I, McCauley J L. Multifractal analysis of petrophysicaldata: Ann. Geophysieae, 1992, 10, 735-761.
  • 8Herrmann F J. Multiscale analysis of well and seismic data, Mathematical Methods in Geophysical Imaging V. 1998, 180 -208.
  • 9Dessing F J. A wavelet transform approach to seismic processing: Ph.D. thesis, Delft University of Technology, Delft, the Netherlands, 1997.
  • 10Herrmann F J. A scaling medium representation, a discussion on well-logs, fractals and waves: Ph. D. thesis, Delft University of Technology,Delft, the Netherlands, 1997.

二级参考文献82

共引文献155

同被引文献37

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部