摘要
给出了SL(3,C)的一类子群中具有两个生成元的可解群的结构,并应用于方程w'''-λρ(z)w'=0.对此方程,由Fuchs方程的单值群的可解性与其可积性的关系,得到了几个结果.
The structure of a class of solvable subgroups generated by only two elements are given , and the result is applied into equation: ω″′-λρ(z)ω′=0. By relation between solvability of monodromy group and integrability of Fuchsian equations for this equation, several results are abtained.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2008年第4期625-630,共6页
Pure and Applied Mathematics
基金
国家自然科学基金(19671009)
关键词
可积性
Fuchs方程
单值群
可解群
特殊线性群
integrability, Fuchsian equation, monodrony group, solvable group, special linear group