期刊文献+

一个新的Smarandache函数及其均值

A new Smarandache function and its mean value
下载PDF
导出
摘要 对任意正整数n≥3,我们定义算术函数C(n)为最大的正整数m≤n-2使得n|Cnm=n!/m!·(n-m)!.即就是C(n)=max{m:m≤n-2,n|Cnm},并规定C(1)=C(2)=1.本文的主要目的是利用初等及解析方法研究这一函数的均值分布问题,并给出几个有趣的均值公式及渐近式. For any positive integer n ≥ 3, we define the arithmetical function C(n) as the largest positive integer m ≤ n - 2 such that n|Cn^m = n!/m!(n-m)!. That is, C(n) = max{m: m ≤ n- 2, n|Cn^m}, and C(1) = C(2) = 1. In reference [9], Jozsef Sandor introduced this function, and asked us to study the properties of C(n). About this problem, it seems that none had studied it yet, at least we have not seen any related papers before. The main purpose of this paper is using the elementary and analytic methods to study the mean value distribution problem of C(n), and to give several interesting mean value formula and asymptotic formula for it.
作者 李梵蓓
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第4期682-685,共4页 Pure and Applied Mathematics
基金 国家自然科学基金(60472068)
关键词 新的Smarandache函数 均值 渐近公式 解析方法 new Smarandache function, mean value, asymptotic formula, analytic method.
  • 相关文献

参考文献10

  • 1Smarandache F. Only Problems, Not Solutions [M]. Chicago: Xiquan Publishing House, 1993.
  • 2Lu Yaming. On the solutions of an equation involving the Smarandache function [J]. Scientia Magna, 2006, 2(1):76-79.
  • 3徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 4Le Maohua. Two function equations [J]. Smarandache Notions Journal, 2004, 14:180-182.
  • 5杜凤英.关于Smarandache函数S(n)的一个猜想[J].纯粹数学与应用数学,2007,23(2):205-208. 被引量:15
  • 6Sandor J. On certain generalizations of the Smarandache function [J]. Smarandache Notions Journal, 2000, 11:202-212.
  • 7Xue Shejiao. On the Smarandache dual function [J]. Scientia Magna, 2007, 3(1):29-32.
  • 8San.dor J. Geometric Theorems, Diophantine Equations, and Arithmetic Functions [M]. Rehoboth, American Research Press, 2002.
  • 9潘承洞 潘承彪.解析数论基础[M].北京:科学出版社,1999..
  • 10Ivic I. The Riemann zeta -function [M]. New York:John Wiley & Sons, 1985.

二级参考文献10

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2Erdos P, Problem 6674, Amer. Math. Monthly, Vol. 98, 1991, 965.
  • 3Tabirca S, About S-multiplicative functions, Octogon, 1999, 7: 169-170.
  • 4Apstol T. M, Introduction to analytic number theory, New York: Springer-Verlag, 1976, 77.
  • 5Farris Mark,Mitshell Patrick. Bounding the Smarandache function[J]. Smarandache Notions Journal, 2002,13:37-42.
  • 6Wang Yongxing. On the Smarandache function [C]//Zhang Wenpeng,Li Junzhuang,Liu Duansen. Research on Smarandaehe Pronblem In Number Theory Ⅱ. Hexis ;Phoenix,AZ 2005.
  • 7Liu Yaming. On the solutions of an equation invloving the Smarandache function[J]. Scientia Magna, 2006,2(1):76-79.
  • 8Jozsef Sandor. On certain inequalities involving the Smarandache function[J]. Scientia Magna, 2006,2 (3) : 78-80.
  • 9Fu Jing. An equation involving the Smarandache function[J]. Scientia Magna, 2006,2(4):83-86.
  • 10Smarandache F. Only Problems, Not Solutions[M]. Chicago:Xiquan Publishing House, 1993.

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部