期刊文献+

关于Smarandache素数列及其它的行列式 被引量:1

On the Smarandache prime part sequences and its determinant
下载PDF
导出
摘要 对任意正整数n≥2,Smarandache下素数列{pp(n)}定义为小于或等于n的最大素数;而Smarandache上素数列{Pp(n)}表示大于或等于n的最小素数.本文的主要目的是利用初等方法研究Smarandache素数列的性质,并得到由Smarandache素数列组成的行列式的一些性质. For any positive integer n ≥ 2, the Smarandache Inferior Prime Part {pp(n)} is the largest prime number less than or equal to n; The Smarandache Superior Prime Part (Pp(n)) is the smallest prime number greater than or equal to n. The main purpose of this paper is using the elementary method to study the value of the determinant formed by the Smarandache prime part sequences, and give an interesting conclusion.
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第4期747-751,共5页 Pure and Applied Mathematics
基金 国家自然科学基金(10671155)
关键词 Smarandache下素数列 Smarandache上素数列 行列式 Smarandache inferior prime part sequence, Smarandache superior prime part sequence, determinant
  • 相关文献

参考文献6

  • 1Smarandache F. Only Problem, Not Solutions[M]. Chicago:Xiquan Publishing House, 1993.
  • 2Smarandache F. Sequences of Numbers Involved in Unsolved Problems[M]. Phoenix:Hexis, 2006.
  • 3Heath-Brown D R. The differences between consecutive primes[J]. Journal of London Math. Soc., 1987,18(2):7- 13.
  • 4Heath-Brown D R. The differences between consecutive primes[J]. Journal of London Math. Soc., 1979, 19(2):207-220.
  • 5吴启斌.一个包含Smarandache函数的复合函数[J].纯粹数学与应用数学,2007,23(4):463-466. 被引量:7
  • 6Yah Xiaoxia. On the Smarandache prime part[J]. Scientia Magna, 2007, 3(3):74-77.

二级参考文献9

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2Smarandache. Only Problems, Not Solutions[M]. Chicago:Xiquan Publishing House, 1993.
  • 3Jozsef Sandor. On certain inequalities involving the Smarandache function[J]. Scientia Magna, 2006,2 (3):78-80.
  • 4Jozsef Sandor. On additive analogues of certain arithmetical function [J]. Smarandache Notions Journal, 2004,14(1):128-132.
  • 5Farris Mark,Mitchell Patrick. Bounding the Smarandache function[J]. Smarandache Notions Journal, 2002,13(1):37-42.
  • 6Wang Yongxing. Research on Smarandache Problem in Number Theory [M]. Phoenix, USA: Hexis, 2005.
  • 7Liu Yaming. On the solutions of an equation involing the Smarandache function[J]. Scientia Magna, 2006,2(1 ) : 76-79.
  • 8Fu Jing. An equation involving the Smarandache function[J]. Scientia Magna, 2006,2(4) :83-86.
  • 9Tom M Apostol. Introduction to Analytic Number Theory[M]. New York:Springer-Verlag, 1976.

共引文献6

同被引文献4

  • 1Smarandache K. Only problems, not solutions. Chicago:Xiquan Publ House, 1993.
  • 2Sandor J. On additive analogue of certain arithmetic functions. Smaramche Notes Journal 2004 ; 14 : 128--132.
  • 3Farris M, Mitchell P. Bounding the smarandache functoin. Smaramche Notes Journal 2002 ; 13:37-42.
  • 4Tom M. Apostol, Introduction to Analytic Number Theory, SpringerVerlag, New York, 1976.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部